Composites of LiFePO4 and activated carbon (LFP-AC) were prepared by a ball milling method. Their morphologies were investigated by scanning electronic microscopy and energy dispersive spectroscopy. Hybrid supercapacitors were assembled using the LFP-AC composites as the positive electrode and Li4Ti5O12 as the negative electrode (LFP-AC/Li4Ti5O12). Effects of the positive electrode composition (ratio of LiFePO4 to AC) on the performance of LFP-AC/Li4Ti5O12 were investigated via constant current charge-discharge tests. The results demonstrated that the specific capacity and the specific power of the LFP-AC/Li4Ti5O12 hybrid supercapacitor significantly depend upon the content of LiFePO4 in the LFP-AC positive electrode. At 0.5 A g−1 charge-discharge current, the specific capacity of the LFP-AC/Li4Ti5O12 with 30 wt. % LiFePO4 and 70 wt. % AC in the positive electrode is 42% higher than that of AC/Li4Ti5O12, and the two supercapacitors have the same specific power. After 500 charge-discharge cycles at 1.0 A g−1, the specific capacity of the LFP-AC/Li4Ti5O12 with 80 wt. % LiFePO4 and 20 wt. % AC in the positive electrode is 53% higher than that of AC/Li4Ti5O12. The hybrid device stores electric energy via both the double-layer electrostatic adsorption and the intercalation/deintercalation of lithium ions.

1.
C. E.
Holland
,
J. W.
Weidner
,
R. A.
Dougal
, and
R. E.
White
,
J. Power Sources
109
,
32
(
2002
).
2.
S. Y.
Kan
,
M.
Verwaal
, and
H.
Broekhuizen
,
J. Power Sources
162
,
971
(
2006
).
3.
H. S.
Choi
,
T.
Kim
,
J. H.
Im
, and
C. R.
Park
,
Nanotechnology
22
,
405402
(
2011
).
4.
P.
Simon
and
Y.
Gogotsi
,
Nature Mater.
7
,
845
(
2008
).
5.
G. G.
Amatucci
,
F.
Badway
,
A. D.
Pasquier
, and
T.
Zheng
,
J. Electrochem. Soc.
148
,
A930
(
2001
).
6.
B. E.
Conway
,
J. Electrochem. Soc.
138
,
1539
(
1991
).
7.
S. W.
Lee
,
N.
Yabuuchi
,
B. M.
Gallant
,
S.
Chen
,
B. S.
Kim
,
P. T.
Hammond
, and
Y.
Shao-Horn
,
Nat. Nanotechnol.
5
,
531
(
2010
).
8.
A.
Kuperman
and
I.
Aharon
,
Renewable Sustainable Energy Rev.
15
,
981
(
2011
).
9.
G.
Sikha
and
B. N.
Popov
,
J. Power Sources
134
,
130
(
2004
).
10.
S.
Liu
,
S.
Liu
,
K.
Huang
,
J.
Liu
,
Y.
Li
,
D.
Fang
,
H.
Wang
, and
Y.
Xia
,
J. Solid State Electrochem.
16
,
1631
(
2012
).
11.
Y. G.
Wang
and
Y. Y.
Xia
,
Electrochem. Commun.
7
,
1138
(
2005
).
12.
C. V.
Rao
and
B.
Rambabu
,
Solid State Ionics
181
,
839
(
2010
).
13.
D.
Cericola
,
P.
Novák
,
A.
Wokaun
, and
R.
Kötz
,
Electrochim. Acta
56
,
8403
(
2011
).
14.
D.
Cericola
,
P.
Novák
,
A.
Wokaun
, and
R.
Kötz
,
J. Power Sources
196
,
10305
(
2011
).
15.
A. D.
Pasquier
,
I.
Plitz
,
J.
Gural
,
S.
Menocal
, and
G.
Amatucci
,
J. Power Sources
113
,
62
(
2003
).
16.
A.
Du Pasquier
,
I.
Plitz
,
S.
Menocal
, and
G.
Amatucci
,
J. Power Sources
115
,
171
(
2003
).
17.
K.
Naoi
,
S.
Ishimoto
,
Y.
Isobe
, and
S.
Aoyagi
,
J. Power Sources
195
,
6250
(
2010
).
19.
C. M.
Ionica-Bousquet
,
D.
Muñoz-Rojas
,
W. J.
Casteel
, Jr.
,
R. M.
Pearlstein
,
G. G.
Kumar
,
G. P.
Pez
, and
M. R.
Palacín
,
J. Power Sources
196
,
1626
(
2011
).
20.
A. D.
Pasquier
,
I.
Plitz
,
J.
Gural
,
F.
Badway
, and
G. G.
Amatucci
,
J. Power Sources
136
,
160
(
2004
).
21.
X.
Hu
,
Z.
Deng
,
J.
Suo
, and
Z.
Pan
,
J. Power Sources
187
,
635
(
2009
).
22.
A.
Du Pasquier
,
C. C.
Huang
, and
T.
Spitler
,
J. Power Sources
186
,
508
(
2009
).
23.
K.
Zaghib
,
M.
Dontigny
,
A.
Guerfi
,
P.
Charest
,
I.
Rodrigues
,
A.
Mauger
, and
C. M.
Julien
,
J. Power Sources
196
,
3949
(
2011
).
24.
X.
Hu
,
Y.
Huai
,
Z.
Lin
,
J.
Suo
, and
Z.
Deng
,
J. Electrochem. Soc.
154
,
A1026
(
2007
).
25.
N.
Böckenfeld
,
R. S.
Kühnel
,
S.
Passerini
,
M.
Winter
, and
A.
Balducci
,
J. Power Sources
196
,
4136
(
2011
).
26.
A. K.
Padhi
,
K. S.
Nanjundaswamy
, and
J. B.
Goodenough
,
J. Electrochem. Soc.
144
,
1188
(
1997
).
27.
N.
Ravet
,
Y.
Chouinard
,
J. F.
Magnan
,
S.
Besner
,
M.
Gauthier
, and
M.
Armand
,
J. Power Sources
97–98
,
503
(
2001
).
28.
K.
Striebel
,
J.
Shim
,
A.
Sierra
,
H.
Yang
,
X.
Song
,
R.
Kostecki
, and
K.
McCarthy
,
J. Power Sources
146
,
33
(
2005
).
You do not currently have access to this content.