Abandoned mines are often associated with enduring liabilities, which involve significant costs for decades after the decommissioning of the mine. Using a decommissioned mine as a geothermal resource can offset the environmental costs by supplying green heat to the communities living in and around the mine area. In this paper, a numerical assessment of geothermal heat extraction from underground mine workings using an open loop geothermal system is carried out. In this study, our focus is on fully flooded mines where the heat flow from the rock mass to the mine cavities is dominantly controlled by conduction in the rock mass. The sustainable heat flux into the mine workings is assessed using a transient two-dimensional axisymmetric heat transfer model. Finite volume method is applied to solve the model and simulate the transient temperature fields in the rock mass and within the water (flowing through cavities). The model is capable of controlling the rate of heat extraction through continuous adjustment of the rate of water flow through the mine. Sustainable rate of heat extraction is calculated for seasonally varied heat loads and for different project life cycles. It is shown that, with proper resource management, each kilometre of a typical deep underground mine tunnel, can produce about 150 kW of usable heat in a sustainable manner. The model is validated by comparing its results with other published models and realistic data available from Springhill mine, Nova Scotia, Canada. It is found that the sustainable heat extraction is controlled dominantly by virgin rock temperature, thermal conductivity of the rock mass, and seasonal heat load variations.

1.
Z.
Malolepszy
, in
Twenty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford, California, US, 2003
(
Stanford University
,
Stanford, California, USA
,
2003
), pp.
259
265
.
2.
E.
Demollin-Schneiders
,
Z.
Malolepszy
, and
D.
Bowers
, in
Passive and Low Energy Cooling for the Built Environment
(
Heliotopos Conferences, Santorini
,
Greece
,
2005
), pp.
683
685
.
3.
J. W.
Tester
,
H. J.
Herzog
,
Z.
Chen
,
R. M.
Potter
, and
M. G.
Frank
,
Sci. Global Secur.
5
,
99
(
1994
).
4.
D. A.
Rothstein
and
C. A.
Manning
,
Geothermal Gradients in Continental Magmatic Arcs: Constraints from the Eastern Peninsular Ranges Batholith, Baja California, México
, edited by
S. E.
Johnson
,
S. R.
Paterson
,
J. M.
Fletcher
,
G. H.
Girty
,
D. L.
Kimbrough
, and
A.
Martin-Barajas
(
The Geological Society of America Inc.
,
Boulder, Colorado
,
2003
), pp.
337
354
.
5.
M. M.
Ghomshei
and
F.
Villecco
, in
Computational Scince and its Application—ICCSA 2009, Seoul, Korea, 2009
, edited by
O.
Gervasi
,
D.
Taniar
,
B.
Murgante
,
A.
Laganà
,
Y.
Mun
, and
M. L.
Gavrilova
(
Springer-Verlag
,
Berlin
,
2009
), pp.
693
699
.
6.
A. M.
Omer
,
Renewable and Sustainable Energy Rev.
12
,
344
(
2008
).
7.
A. M.
Jessop
,
M. M.
Ghomshei
, and
M. J.
Drury
,
Geothermics
20
,
369
(
1991
).
8.
G. R.
Watzlaf
and
T. E.
Ackman
,
Mine Water Environ.
25
,
1
(
2006
).
9.
A. M.
Jessop
,
J. K.
Macdonald
, and
H.
Spence
,
Energy Sources
17
,
93
(
1995
).
10.
R.
Matthes
and
J.
Schreyer
, in
Water in Mining Environments, Cagliari, Sardinia, Italy, 2007
, edited by
R.
Cidu
and
F.
Frau
(
IMWA
,
Cagliari
,
2007
), pp.
227
231
.
11.
K.
Kranz
and
J.
Dillenardt
,
Mine Water Environ.
29
,
68
(
2010
).
12.
A.
Hall
,
J. A.
Scott
, and
H.
Shang
,
Renewable Sustainable Energy Rev.
15
,
916
(
2011
).
13.
M. M.
Ghomshei
, Report 2007, Norman B. Keevil Institute of Mining Engineering, Yellowknife,
2007
, p.
18
, see http://www.yellowknife.ca/AssetFactory.aspx?did=6259.
14.
J.
Raymond
and
R.
Therrien
,
Geothermics
37
,
189
(
2008
).
15.
M. M.
Ghomshei
and
J. A.
Meech
, in
Intelligence in a Materials World: Nanotechnology for the 21st Century, Lancaster, Pennsylvania, US, 2005
, edited by
J. A.
Meech
,
Y.
Kawazoe
,
V. J.
Kumar
,
J.
Maguire
, and
H. P.
Wang
(
DEStech Publications
,
Lanacaster
,
2003
), pp.
401
411
.
16.
R.
Rodriguez
and
M. B.
Diaz
,
Renewable Energy
34
,
1716
(
2009
).
17.
A.
Renz
,
W.
Rühaak
,
P.
Schätzl
, and
H. -J. G.G.
Diersch
,
Mine Water Environment
28
,
2
(
2009
).
18.
V.
Hamm
and
B. B.
Sabet
,
Geothermics
39
,
177
(
2010
).
19.
S. V.
Patankar
,
Numerical Heat Transfer and Fluid Flow
, edited by
W. J.
Minkowycz
and
E. M.
Sparrow
(
McGraw-Hill Book Company
,
New York
,
1980
).
20.
K.
Ogata
,
Modern Control Engineering
(
Prentice Hall
,
Englewood Cliffs, NJ
,
2010
).
21.
M. N.
Özisik
,
Boundary Value Problems of Heat Conduction
(
International Textbook Company
,
Mineola, NY
,
1968
).
You do not currently have access to this content.