The primary objective of this investigation is to develop a new control method for wind turbines that can increase their wind energy capture efficiency. Since the resultant wind turbine system dynamics are profoundly nonlinear and coupled with significant uncertainties, traditional model-based control is found to be not only structurally complex but also computationally expensive. Here, we explore two sets of control algorithms to enhance wind to electrical energy conversion. The first accounts for system nonlinearities and external disturbances by integrating variable structure control with adaptive control. The second accommodates the nonlinearities arising from rotor aerodynamics and pitch (actuation) dynamics, as well as external disturbances, through a method inspired by a 1st order human memory/learning model. The second method allows direct maximum power coefficient tracking for winds under the rated speed and ensures rated power output for winds over the rated speed. Basically, it uses the system current and most recent memorized responses, together with past control experience, to generate new control actions. Both rotor dynamics and actuation (pitch) dynamics are reflected indirectly through the observed/measured system response at each instant, and are embedded within the control mechanism. Thus, there is no need for detailed information on the system model or system parameters in the control’s design and implementation. The efficacy of both proposed approaches is analyzed through numerical simulations.

1.
J. J.
Zhao
,
X.
Lia
,
J.T.
Hao
, and
J. P.
Lu
,
Electr. Power Syst. Res.
80
,
6
(
2010
).
2.
J.
Bystryk
and
P. E.
Sullivan
,
J. Wind Eng. Ind. Aerodyn.
99
,
5
(
2011
).
3.
R.
Pena
,
J. C.
Clare
, and
G. M.
Asher
, “
Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation
,” in
Proceedings of IEEE Electrical Power Application
(
IET, Stevenage
,
U.K.
,
1996
), pp.
231
241
.
4.
H.
Akagi
and
H.
Sato
,
IEEE Trans. Power Electron.
17
,
1
(
2002
).
5.
R. W.
De Doncker
,
S.
Muller
, and
M.
Deicke
,
IEEE Ind. Appl. Mag.
8
,
3
(
2002
).
6.
I.
Sarasola
,
J.
Poza
,
M. A.
Rodriguez
, and
G.
Abad
,
Energy Convers. Manage.
52
,
2
(
2011
).
7.
L. L.
Fan
,
H. P.
Yin
, and
Z. X.
Miao
,
Electr. Power Syst. Res.
81
,
2
(
2011
).
8.
Y.
Liao
,
H.
Li
,
J.
Yao
and
K.
Zhuang
,
Electr. Power Syst. Res.
81
,
1
(
2011
).
9.
T.
Ahmed
,
O.
Noro
,
K.
Matsuo
,
Y.
Shindo
, and
M.
Nakaoka
, “Optimum pitch control for variable-pitch vertical-axis wind turbines by a single stage model on the momentum theory,” in IEEE International Conference on Electrical Machines and Systems (IEEE, Beijing,
2003
), Vol. 1, pp.
293
296
.
10.
L.
Dambrosio
and
B.
Fortunato
, “
One step ahead adaptive control technique for a wind turbine-synchronous generator system
,” in
IEEE Transactions on Energy Conversion Engineering Conference
(
IEEE, Honolulu
,
U.S.A.
,
1997
), Vol. 3, pp.
1970
1975
.
11.
R.
Sakamoto
,
T.
Senjyu
,
T.
Kinjo
,
N.
Urasaki
, and
T.
Funabashi
,
IEEE Trans. Power Syst. Technol.
1
,
834
839
(
2004
).
12.
P.
Novak
,
T.
Ekelund
,
I.
Jovik
and
B.
Schidtbauer
,
IEEE Control Syst. Mag.
15
,
4
(
1995
).
13.
D. A.
Spera
,
Wind Turbine Technology—Fundamental Concepts in Wind Turbine Engineering
(
ASME
,
New York
,
1995
).
14.
T.
Ekelund
,
J. Wind Eng. Ind. Aerodyn.
85
,
1
(
2000
).
15.
B. S.
Liebst
,
J. Energy
7
,
2
(
1983
).
16.
G. L.
Johnson
,
Wind Power Systems
(
Prentice-Hall
,
Inc., Englewood Cliffs, NJ
,
1985
).
17.
S. A.
Salle
,
D.
Reardon
,
W. E.
Leithead
, and
M. J.
Grimble
,
Int. J. Control
52
,
6
(
1990
).
18.
Y. D.
Song
,
B.
Dhrikaran
, and
X.
Bao
,
J. Wind Eng. Ind. Aerodyn.
85
,
1
(
2000
).
19.
R. M.
Hilloow
and
A. M.
Sharaf
,
IEEE Trans. Ind. Appl.
32
,
1
(
1996
).
20.
T.
Senjyu
,
R.
Sakamoto
,
N.
Urasaki
,
T.
Funabashi
,
H.
Fujita
, and
H.
Sekine
,
IEEE Trans. Energy Convers.
21
,
2
(
2006
).
21.
T.
Kosaku
,
M.
Sano
, and
K.
Nakatani
, “
Optimum pitch control for variable-pitch vertical-axis wind turbines by a single stage model on the momentum theory
,” in
IEEE International Conference Systems, Man, and Cybernetics
(
IEEE
,
Tunisia
,
2002
), p.
5
.
22.
D.
Trudnowski
and
D.
LeMieux
, “
Independent pitch control using rotor position feedback for wind-shear and gravity fatigue reduction in a wind turbine
,” in
IEEE Proceedings on American Control Conference
(
American Automatic Control Council
,
Alaska
,
2002
), Vol. 6, pp.
4335
4340
.
23.
M.
Robinson
and
P.
Veers
,
Wind Turbine Control Workshop
(
Santa Clara University
,
Santa Clara, CA
,
1997
).
24.
E.S.
Abdin
and
W.
Xu
,
IEEE Trans. Energy Convers.
15
,
1
(
2000
).
25.
S.A.
Salle
,
D.
Reardon
,
W. E.
Leithead
, and
M. J.
Grimble
,
Int. J. Control
52
,
6
(
1990
).
26.
S.
Heier
,
Grid Integration of Wind Energy Conversion Systems
(
Wiley
,
New York
,
1998
).
27.
O.
Wasynczuk
,
D. T.
Man
, and
J. P.
Sullivan
,
IEEE Trans. PAS
100
,
6
(
1981
).
28.
R. B.
Chedid
,
F.
Mrad
, and
M.
Basma
,
IEEE Trans. Energy Convers.
14
(
4
),
1597
(
1999
).
29.
L. G.
Weng
,
W. C.
Cai
,
R.
Zhang
, and
Y. D.
Song
, “
Bio-inspired control approach to multiple spacecraft formation flying
,” in
IEEE Conference on E-Science and Grid Computing
(
IEEE, Amsterdam
,
Netherlands
,
2006
), pp.
120
126
.
30.
Y. D.
Song
, “
Memory-based control of nonlinear dynamic systems part i - design and analysis
,” in
IEEE Conference on Industrial Electronics and Applications
, Singapore, May 24–26,
2006
, pp.
1
6
.
31.
L. G.
Weng
,
B.
Li
,
W. C.
Cai
,
C.
Zhang
,
M.
Jin
, and
Y. D.
Song
, “
Human memory/learning inspired approach for attitude control of crew exploration vehicles (CEVs)
,” in
American Control Conference
, New York City, 11–13 July,
2007
.
You do not currently have access to this content.