Presenting new sources of safe energy sources is not only an urgent need but also a vital input for social and economic development. In this work, we present a novel technology to produce electric energy from food; in particular from commercial potatoes. The food has been sandwiched between two metals; for example, Zn/potatoes/Cu and the open circuit electric potentials Voc have been measured. It has been found that Voc lay in the range Voc 0.32 V < Voc < 1.39 V and decays exponentially by time. The open circuit potential varies from food to another and depends also on the metallic contacts and food thickness. It has been found that Voc is a function of the potatoes thickness, which has a maximum at 1.05 V and the corresponding maximum short circuit current is about 1.7 mA. The internal resistivity for the potatoes battery is about 1.4 × 104 Ω cm and the metallic electrodes resistance is about 57.4 Ω × area for Zn/Cu electrodes. The short circuit current depends on the nature of the metallic electrodes and the food itself. This current is very sensitive to the food thickness. At a critical thickness when the potato slice is about 0.18  cm, the maximum short circuit current density of the potatoes battery is about 15.7  μA/cm2. The maximum electric power, generated at 0.18  cm, equals155 μW/cm2. The Zn/potatoes/Cu battery has electric capacity 2.57 times more efficient than an AA/LR6 1.5 V alkaline Energizer® battery. Also, cost analysis has showed that potatoes-cells generate electric energy 26 fold cheaper than commercially available Energizer® battery. This work presents a new energy source: Safe, economic, durable, and renewable; also it can fit most applications.

1.
K.
Lohmann
,
Naturwiss.
17
(
31
),
624
(
1929
).
2.
L.
Galvani
,
Bon. Sci. Art. Inst. Acad. Comm.
7
,
363
(
1791
).
3.
A.
Volta
,
Trans. R. Soc. London
90
,
403
(
1800
).
4.
C.
Pan
,
Y.
Fang
,
H.
Wu
,
M.
Ahmad
,
Z.
Luo
,
Q.
Li
,
J.
Xie
,
X.
Yan
,
L.
Wu
,
Z.
Lin Wang
, and
J.
Zhu
,
Adv. Mater.
22
(
47
),
5388
(
2010
).
5.
A.
Goldberg
,
D. R.
Haim
, and
Rubinsky
,
J. Renewable Sustainable Energy
2
,
033103
(
2010
).
6.
A. J.
Gusphyl
, “
Generating electricity within the physiological environment for low power implantable medical device applications: Towards the development of in vivo-bio-fuel cell technologies
,” Ph. D. thesis (
University of Pittsburgh
,
2007
).
7.
N.
Mano
,
M.
Fey
, and
Heller
,
J. Am. Chem. Soc.
125
,
6588
(
2003
).
8.
A. A.
Al-Ghamdi
,
F. M.
Al-Marzouki
, and
S.
Abdalla
,
Device and method for testing food quality
, U.S. Patent Office, Publication No. U.S. 2010/0237850 A1, Application No. U.S. 12/382616 field on 19-Mar-2009, published on 23-Sep-2010.
9.
S.
Abdalla
,
A. A.
Al-Ghamdi
, and
F. M.
Al-Marzouki
, in
IEEE Proceedings of Saudi International Electronics, Communications and Photonics Conference (SIECPC)
, Riyadh, 22–24 April
2011
.
10.
M.
Nic
,
J.
Jirat
, and
B.
Kosata
,
Compendium of Chemical Terminology
, 2nd ed. (
the Gold Book
,
Oxford, IUPAC
,
1997
).
11.
H. P.
Schwan
and
C. D.
Ferris
,
Rev. Sci. Instrum.
39
,
481
(
1968
).
12.
H.
Fricke
,
Phys. Mag.
14
,
310
(
1932
).
13.
14.
T.
Ragheb
and
L. A.
Geddes
,
Ann. Biomed. Eng.
19
,
151
(
1991
).
15.
S.
Gabriel
,
R W.
Lau
, and
C.
Gabriel
,
Phys. Med. Biol.
41
,
2251
(
1996
).
16.
D.
Wahl
,
Galvnotechtnik
,
96
(
8
),
1820
(
2005
).
17.
F. G.
Smith
,
Plant Physiol.
27
(
4
),
736
(
1952
).
18.
J.
Velišek
,
R.
Kubec
, and
D.
Jiň
,
Chemische
204
(
2
),
161
(
1997
).
19.
N.
Aharoson
,
S. J.
Lehotay
, and
M. A.
Ibrahim
,
J. Agric. Food Chem.
42
(
12
),
2817
(
1994
).
20.
N.
Singh
and
P. S.
Rajini
,
Food Chem.
58
(
4
),
611
(
2004
).
21.
E. V.
Maas
,
S. R.
Grattan
, and
G.
Ogata
,
Irrig. Sci.
3
,
157
(
1982
).
22.
Energizer®, AA Energizer L91, USA, 1-800-383-7323/CANADA,1-800-383-7323, www.energizer.com, USA/CAN, http://data.energizer.com/PDFs/l91.pdf.
24.
See http://www.metalprices.com/FreeSite/metals/zn/zn.asp for London metal exchange, 31 May
2011
.
You do not currently have access to this content.