In this study, for the first time, a nanoceramic Al2O3 was used as a coating material in the low heat rejection engine concept. Experiments were conducted on single cylinder, four stroke, water cooled, and direct injection diesel engine. First, the engine was tested at different load conditions without coating. Then, combustion chamber surfaces (cylinder head, cylinder liner, valves, and piston crown face) were coated with nanoceramic material of Al2O3 using plasma spray method. Comparative evaluation on performance and emission characteristics using fuel as rice bran methyl ester, pongamia methyl ester, and biodiesel/diesel fuel mixtures was studied in the ceramic coated and uncoated engines under the same running conditions. An increase in engine power and a decrease in specific fuel consumption, as well as significant improvements in exhaust gas emissions (except NOx) and smoke density, were observed in the ceramic coated engines compared with those of the uncoated engine.

1.
P. K.
Sahoo
,
L. M.
Das
,
M. K. G.
Babu
, and
S. N.
Naik
,
Fuel
86
,
448
(
2007
).
2.
B.
Safgonul
,
H.
Arslan
,
M.
Ergeneman
, and
C.
Sorusbay
,
Internal Combustion Engines
(
Cagaloglu
,
Istanbul
,
1995
).
3.
A.
Aktas
and
Y.
Sekmen
,
J. Fac. Eng. Archit.
23
,
199
(
2008
).
4.
O. M. L.
Nwafor
and
G.
Rice
,
Appl. Energy
54
,
345
(
1996
).
5.
6.
R.
Altin
, “
An experimental investigation on use of vegetable oils as diesel engine fuels
,” Ph.D. thesis, Gazi University,
1998
.
7.
K.
Yamane
,
A.
Ueta
, and
Y.
Shimamoto
,
Int. J. Engine Res.
2
,
249
(
2001
).
8.
M.
Lapuerta
,
J. R.
Fernandez
, and
J. R.
Audelo
,
Bioresour. Technol.
99
,
731
(
2008
).
9.
S.
Murillo
,
J. L.
Miguez
,
J.
Porteiro
, and
E.
Granada
,
Fuel
86
,
1765
(
2007
).
10.
A.
Bouaid
,
M.
Martine
, and
J.
Aracil
,
Chem. Eng. J.
134
,
93
(
2007
).
11.
Y. F.
Lin
,
Y. G.
Wu
, and
C. T.
Chang
,
Fuel
86
,
1772
(
2007
).
12.
M.
Nadeem
,
C.
Rangkuti
,
K.
Anuar
,
M. R. U.
Haq
,
I. B.
Tan
, and
S. S.
Shah
,
Fuel
85
,
2111
(
2006
).
13.
H.
Raheman
and
S. V.
Gadge
,
Fuel
886
,
2568
(
2007
).
14.
S.
Kalligeros
,
F.
Zannikos
,
S.
Stournas
,
E.
Lois
,
G.
Anastopoulos
,
Ch.
Teas
, and
F.
Sakellaropoulos
,
Biomass Bioenergy
24
,
141
(
2003
).
15.
G.
Labeckas
and
S.
Slavinskas
,
Renewable Energy
31
,
849
(
2006
).
16.
C.
Öner
and
S.
Altun
,
Appl. Energy
86
,
2114
(
2009
).
17.
P. K.
Devan
and
N. V.
Mahalakshmi
,
Appl. Energy
86
,
675
(
2009
).
18.
A. K.
Agarwal
and
K.
Pajamanoharan
,
Appl. Energy
86
,
106
(
2009
).
19.
J. M.
Lopez
,
A.
Gomez
,
F.
Aparicio
, and
J.
Sanchez
,
Appl. Energy
86
,
610
(
2009
).
20.
M.
Canakci
,
A.
Erdil
, and
E.
Arcaklioglu
,
Appl. Energy
83
,
594
(
2006
).
21.
T.
Hejwowski
and
A.
Weronski
,
Vacuum
65
,
427
(
2002
).
22.
X.
Sun
,
W.
Wang
, and
R.
Bata
,
Trans. ASME.
116
,
758
(
1994
).
23.
H.
Hazar
and
U.
Ozturk
,
Renewable Energy
35
,
1
(
2010
).
25.
N. R.
Banapurmath
and
P. G.
Tewari
,
Int. J. Sustainable Energy
2
,
265
(
2009
).
26.
27.
C.
Hasimoglu
,
M.
Ciniviz
,
Y.
OzsertIcingur
,
A.
Parlak
, and
M. S.
Salman
,
Renewable Energy
10
,
1016
(
2007
).
28.
C. M. V.
Prasad
,
M. V. S. M.
Krishna
,
C. P.
Reddy
, and
K. R.
Mohan
,
Proc. Inst. Mech. Eng.
214(D)
,
181
(
2000
).
29.
C. Y.
Lin
and
H. A.
Lin
,
Fuel
85
,
298
(
2006
).
30.
N.
Usta
,
Energy Convers. Manage.
46
,
2373
(
2005
).
31.
W. R.
Wade
,
P. H.
Havstad
,
E.
Jounsted
,
F. H.
Trinkler
, and
I. J.
Garwin
,
ImechE/SAE
93
,
11
(
1984
).
32.
A.
Parlak
,
Energy Convers. Manage.
46
,
167
(
2005
).
You do not currently have access to this content.