The rapid adoption of electric vehicles and the increasing integration of fast-charging stations (FCS) into modern power networks have introduced significant challenges to system stability and reliability. Critical issues, such as voltage sag (VS), high impedance faults (HIF), and low impedance faults (LIF), disrupt system operations and can cause severe equipment damage. This study proposes a novel hierarchical protection framework tailored for an IEEE-14 bus power system with eight concurrently operating FCS supported by photovoltaic systems and the main grid. The framework employs a hybrid machine learning approach: a two-layer autoencoder for feature extraction, long short-term memory networks for initial fault categorization into VS, HIF, and LIF, and XGBoost for refining fault classification into subcategories, including single-line-to-ground, line-to-line-to-ground, three-phase, and three-phase-to-ground faults. The proposed methodology achieved 99% accuracy in VS detection and near-perfect precision and recall for fault classification, significantly outperforming existing techniques. Furthermore, the framework offers enhanced computational efficiency, scalability, and robustness to noise, making it a reliable solution for real-time fault detection and classification. This work provides a foundation for advancing intelligent fault management systems in modern power grids with high FCS penetration, addressing both current and future challenges.

1.
A. G.
Phadke
,
P.
Wall
,
L.
Ding
, and
V.
Terzija
, “
Improving the performance of power system protection using wide area monitoring systems
,”
J. Mod. Power Syst. Clean Energy
4
(
3
),
319
331
(
2016
).
2.
M.
Bhatnagar
,
A.
Yadav
, and
A.
Swetapadma
, “
Enhancing the resiliency of transmission lines using extreme gradient boosting against faults
,”
Electr. Power Syst. Res.
207
,
107850
(
2022
).
3.
J. C.
Gomez
and
M. M.
Morcos
, “
Voltage sag and recovery time in repetitive events
,”
IEEE Trans. Power Delivery
17
(
4
),
1037
1043
(
2002
).
4.
C. J.
Melhorn
,
T. D.
Davis
, and
G. E.
Beam
, “
Voltage sags: Their impact on the utility and industrial customers
,”
IEEE Trans. Ind. Appl.
34
(
3
),
549
558
(
1998
).
5.
M. H. J.
Bollen
, “
Voltage sags: Effects, mitigation and prediction
,”
Power Eng. J.
10
(
3
),
129
135
(
1996
).
6.
Y.
Wang
,
S.
Li
, and
X.-Y.
Xiao
, “
Estimation method of voltage sag frequency considering transformer energization
,”
IEEE Trans. Power Delivery
36
(
6
),
3404
3413
(
2021
).
7.
B. K.
Chaitanya
,
A.
Yadav
, and
M.
Pazoki
, “
An intelligent detection of high-impedance faults for distribution lines integrated with distributed generators
,”
IEEE Syst. J.
14
,
870
879
(
2020
).
8.
A.
Ghaderi
,
H. L.
Ginn
III
, and
H. A.
Mohammadpour
, “
High impedance fault detection: A review
,”
Electr. Power Syst. Res.
143
,
376
388
(
2017
).
9.
I.
Baqui
,
I.
Zamora
,
J.
Mazón
, and
G.
Buigues
, “
High impedance fault detection methodology using wavelet transform and artificial neural networks
,”
Electr. Power Syst. Res.
81
,
1325
1333
(
2011
).
10.
M. S.
Tonelli-Neto
,
J. G. M. S.
Decanini
,
A. D. P.
Lotufo
, and
C. R.
Minussi
, “
Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders
,”
Int. J. Electr. Power Energy Syst.
11
,
1557
1565
(
2017
).
11.
Z.
Moravej
,
S. H.
Mortazavi
, and
S. M.
Shahrtash
, “
DT-CWT based event feature extraction for high impedance faults detection in distribution system
,”
Int. Trans. Electr. Energy Syst.
25
,
3288
3303
(
2015
).
12.
S.
Wang
and
P.
Dehghanian
, “
On the use of artificial intelligence for high impedance fault detection and electrical safety
,”
IEEE Trans. Ind. Appl.
56
,
7208
7216
(
2020
).
13.
V.
Veerasamy
,
N. I. A.
Wahab
,
R.
Ramachandran
,
M.
Thirumeni
,
C.
Subramanian
,
M. L.
Othman
, and
H.
Hizam
, “
High-impedance fault detection in medium-voltage distribution network using computational intelligence-based classifiers
,”
Neural Comput. Appl.
31
,
9127
9143
(
2019
).
14.
Y.
Sheng
and
S. M.
Rovnyak
, “
Decision tree-based methodology for high impedance fault detection
,”
IEEE Trans. Power Delivery
19
,
533
536
(
2004
).
15.
A.
L'Heureux
,
K.
Grolinger
,
H. F.
Elyamany
, and
M. A.
Capretz
, “
Machine learning with big data: Challenges and approaches
,”
IEEE Access
5
,
7776
7797
(
2017
).
16.
E. A.
Nagata
,
D. D.
Ferreira
,
M. H. J.
Bollen
,
B. H. G.
Barbosa
,
E. G.
Ribeiro
,
C. A.
Duque
, and
P. F.
Ribeiro
, “
Real-time voltage sag detection and classification for power quality diagnostics
,”
Measurement
164
,
108097
(
2020
).
17.
R.
Naidoo
and
P.
Pillay
, “
A new method of voltage sag and swell detection
,”
IEEE Trans. Power Delivery
22
(
2
),
1056
1063
(
2007
).
18.
Ö.
Gencer
,
S.
Öztürk
, and
T.
Erfidan
, “
A new approach to voltage sag detection based on wavelet transform
,”
Int. J. Electr. Power Energy Syst.
32
(
2
),
133
140
(
2010
).
19.
R. C.
Leborgne
and
D.
Karlsson
, “
Voltage sag source location based on voltage measurements only
,”
Electr. Power Qual. Util. J.
14
,
25
30
(
2008
).
20.
G.
Shahgholian
,
Z.
Azimi
, and
J.
Faiz
, “
Voltage sag in distribution systems—A review and comparative study (reasons, characteristics, compensations and detection)
,”
J. Electr. Power Energy Convers. Syst.
1
(
3
),
107
119
(
2016
).
21.
Y.
Mohammadi
,
S. M.
Miraftabzadeh
,
M. H. J.
Bollen
, and
M.
Longo
, “
Voltage-sag source detection: Developing supervised methods and proposing a new unsupervised learning
,”
Sustainable Energy Grids Networks
32
,
100855
(
2022
).
22.
C.
Becker
,
W.
Braun
,
K.
Carrick
,
T.
Diliberti
,
C.
Grigg
,
J.
Groesch
,
B.
Hazen
,
T.
Imel
,
D.
Koval
,
D.
Mueller
,
T. S.
John
, and
L. E.
Conrad
, “
Proposed chapter 9 for predicting voltage sags (dips) in revision to IEEE Std 493, the Gold Book
,”
IEEE Trans. Ind. Appl.
30
(
3
),
805
821
(
1994
).
23.
M. R.
Qader
,
M. H. J.
Bollen
, and
R. N.
Allan
, “
Stochastic prediction of voltage sags in a large transmission system
,”
IEEE Trans. Ind. Appl.
35
(
1
),
152
162
(
1999
).
24.
K.
Rai
,
F.
Hojatpanah
,
F.
Badrkhani Ajaei
, and
K.
Grolinger
, “
Deep learning for high-impedance fault detection: Convolutional autoencoders
,”
Energies
14
,
3623
(
2021
).
25.
M.
Tschannen
,
O.
Bachem
, and
M.
Lucic
, “
Recent advances in autoencoder-based representation learning
,” arXiv:1812.05069 (
2018
).
26.
S.
Wang
,
H.
Chen
,
L.
Wu
, and
J.
Wang
, “
A novel smart meter data compression method via stacked convolutional sparse auto-encoder
,”
Int. J. Electr. Power Energy Syst.
118
,
105761
(
2020
).
27.
L. P.
Perera
and
B.
Mo
, “
Ship performance and navigation data compression and communication under autoencoder system architecture
,”
J. Ocean Eng. Sci.
3
(
2
),
133
143
(
2018
).
28.
A.
Gogna
and
A.
Majumdar
, “
Discriminative autoencoder for feature extraction: Application to character recognition
,”
Neural Process. Lett.
49
,
1723
1735
(
2019
).
29.
Y.
Qiu
,
W.
Zhou
,
N.
Yu
, and
P.
Du
, “
Denoising sparse autoencoder-based ictal EEG classification
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
26
(
9
),
1717
1726
(
2018
).
30.
J.
Qian
,
Z.
Song
,
Y.
Yao
,
Z.
Zhu
, and
X.
Zhang
, “
A review on autoencoder based representation learning for fault detection and diagnosis in industrial processes
,”
Chemom. Intell. Lab. Syst.
231
,
104711
(
2022
).
31.
M. R.
Shadi
,
M. T.
Ameli
, and
S.
Azad
, “
A real-time hierarchical framework for fault detection, classification, and location in power systems using PMUs data and deep learning
,”
Int. J. Electr. Power Energy Syst.
134
,
107399
(
2022
).
32.
P.
Trizoglou
,
X.
Liu
, and
Z.
Lin
, “
Fault detection by an ensemble framework of Extreme Gradient Boosting (XGBoost) in the operation of offshore wind turbines
,”
Renewable Energy
179
,
945
962
(
2021
).
33.
The MathWorks, Inc.
,
MATLAB
(
The MathWorks, Inc.
,
Natick, Massachusetts
,
2019
).
34.
S.
Alshareef
, “
Voltage sag assessment, detection, and classification in distribution systems embedded with fast charging stations
,”
IEEE Access
11
,
89864
(
2023
).
35.
F.
Rafique
,
L.
Fu
, and
R.
Mai
, “
End to end machine learning for fault detection and classification in power transmission lines
,”
Electr. Power Syst. Res.
199
,
107430
(
2021
).
36.
F.
Rafique
,
L.
Fu
, and
R.
Mai
, “
LSTM autoencoders based unsupervised machine learning for transmission line protection
,”
Electr. Power Syst. Res.
221
,
109432
(
2023
).
37.
M. S.
Uddin
et al, “
On the protection of power system: Transmission line fault analysis based on an optimal machine learning approach
,”
Energy Rep.
8
,
10168
10182
(
2022
).
38.
J.
Tavoosi
,
M.
Shirkhani
,
A.
Azizi
,
S.
Ud Din
,
A.
Mohammadzadeh
, and
S.
Mobayen
, “
A hybrid approach for fault location in power distributed networks: Impedance-based and machine learning technique
,”
Electr. Power Syst. Res.
210
,
108073
(
2022
).
39.
M.
Jamil
,
A.
Kalam
,
A. Q.
Ansari
, and
M.
Rizwan
, “
Generalized neural network and wavelet transform based approach for fault location estimation of a transmission line
,”
Appl. Soft Comput.
19
,
322
332
(
2014
).
40.
A.
Oliveira
,
F.
Moreira
,
A.
Picanço
et al, “
Traveling wave fault location for AC transmission lines: An approach based on the application of EMD and Teager energy operator
,”
Electr. Eng.
107
,
2581
2593
(
2024
).
41.
F.
Zheng
,
Y.
Chen
,
Y.
Zhang
,
Y.
Lın
, and
M.
Guo
, “
Low voltage ride-through capability improvement of microgrid using a hybrid coordination control strategy
,”
J. Renewable Sustainable Energy
11
(
3
),
034102
(
2019
).
42.
M.
Sufyan
,
N. A.
Rahim
,
B.
Eid
, and
S. R. S.
Raihan
, “
A comprehensive review of reactive power control strategies for three phase grid connected photovoltaic systems with low voltage ride through capability
,”
J. Renewable Sustainable Energy
11
(
4
),
042701
(
2019
).
You do not currently have access to this content.