This study aims to explore the impact of waste motor oil on modified asphalt mixtures based on phosphogypsum on their characteristics at low and medium temperatures. The asymmetric semi-circular bending test was used to assess modified asphalt mixtures with varying waste engine oil (WEO) dosages, and the applicability of different fracture codes to asphalt mixtures is discussed. The findings demonstrated that anhydrous calcium sulfate whiskers (ACSW) and WEO combined significantly increased the fracture toughness of asphalt mixtures at low temperatures. Compared to base asphalt mix, the combination of 2% WEO and 3% ACSW also demonstrated higher fracture toughness than the control group, and the WEO effectively made up for the reduction in low-temperature flexibility caused by the modification of ACSW. The fracture toughness of asphalt mixtures declined with increasing temperature. The inclusion of WEO increased the value of the crack resistance index, demonstrating its efficacy in fortifying asphalt mixes. Therefore, 3% ACSW and 2% WEO composite modified asphalt mixtures can be selected for construction in cold winter areas to improve the low-temperature cracking resistance of the pavement. The engineering experience criterion is in good agreement with the experimental data, the generalized maximum circumferential stress criterion has high accuracy in predicting the low temperature crack angle of modified asphalt mixtures, the MTS criterion has a bias, and Eq. (27) is suggested as a criterion for evaluating the low-temperature fracture characteristics in modified asphalt mixtures.

1.
N.
Alaswadko
,
R.
Hassan
,
D.
Meyer
, and
M.
Bayar
, “
Probabilistic prediction models for crack initiation and progression of spray sealed pavements
,”
Int. J. Pavement Eng.
20
(
1
),
1
11
(
2019
).
2.
M.
Aliha
and
S.
Mousavi
, “
Sub-sized short bend beam configuration for the study of mixed-mode fracture
,”
Eng. Fract. Mech.
225
,
106830
(
2020
).
3.
S. G.
Wang
and
X. M.
Huang
,
Asphalt Pavement Maintenance and Reconstruction
(Communications Press
,
Beijing
,
China
,
2012
), pp.
88
102
.
4.
S.
Li
,
S. W.
Chen
,
Z. H.
Liu
et al, “
Damage behavior and mechanism of asphalt layer of rigid base asphalt pavement
,”
J. Central South Univ. (Sci. Technol.)
47
(
3
),
1065
1070
(
2016
).
5.
K.
Majidzadeh
,
C.
Buranarom
, and
M.
Karakouzian
, “
Application of fracture mechanics for improved design of bituminous concrete, vol. 1. Plan research, state-of-the-art, and mathematical investigations
,”
Report No. FHWA-RD-76-91
,
1976
.
6.
W. M.
Song
,
Z. H.
Xu
,
H.
Wu
,
F. Z.
Xu
, and
Q.
Yi
, “
A unified evaluation method for asphalt concrete fracture performance in low and medium temperatures
,”
J. Central South Univ. (Nat. Sci. Ed.)
52
(
07
),
2386
2393
(
2021
).
7.
M. O.
Marasteanu
,
S.
Dai
,
F. J.
Labuz
, and
X.
Li
, “
Determining the low-temperature fracture toughness of asphalt mixtures
,”
Transp. Res. Rec.
1789
(
1
),
191
199
(
2002
).
8.
M. P.
Wagoner
, W. G. Buttlar, and G. H. Paulino, “
Development of a single-edge notched beam test for asphalt concrete mixtures
,”
J. Test. Eval.
33
(
6
),
452
460
(
2005
).
9.
M.
Elwardany
,
J.
Habbouche
,
A.
Andriescu
et al, “
Comprehensive performance evaluation of high polymer-modified asphalt binders beyond linear viscoelastic rheological surrogates
,”
Constr. Build. Mater.
351
,
128902
(
2022
).
10.
H. P.
Pour
,
M.
Aliha
, and
M.
Keymanesh
, “
Evaluating mode I fracture resistance in asphalt mixtures using edge notched disc bend ENDB specimen with different geometrical and environmental conditions
,”
Eng. Fract. Mech.
190
,
245
258
(
2018
).
11.
H.
Motamedi
,
H.
Fazaeli
,
M.
Aliha
et al, “
Evaluation of temperature and loading rate effect on fracture toughness of fiber reinforced asphalt mixture using edge notched disc bend (ENDB) specimen
,”
Constr. Build. Mater.
234
,
117365
(
2020
).
12.
M.
Zarei
,
A. A.
Kordani
,
M.
Zahedi
et al, “
Evaluation of low and intermediate temperatures fracture indices for modified Warm mix asphalt (WMA) using edge notched disc bend (ENDB) specimen
,”
Theor. Appl. Fract. Mech.
116
,
103137
(
2021
).
13.
M.
Zarei
,
A. A.
Kordani
, and
M.
Zahedi
, “
Evaluating the fracture behaviour of modified asphalt concrete composites (ACC) at low and intermediate temperatures using edge notched disc bend (ENDB) specimen
,”
Road Mater. Pavement Des.
23
(
8
),
1917
1941
(
2022
).
14.
S. G.
Hosseini
,
A. A.
Kordani
, and
M.
Zarei
, “
Effect of recycled additives on pure mode I fracture resistance and moisture susceptibility of hot mix asphalt (HMA): An experimental study using semicircular bending (SCB) and indirect tensile strength (ITS) tests
,”
Theor. Appl. Fract. Mech.
128
,
104168
(
2023
).
15.
X.
Chen
and
M.
Solaimanian
, “
Effect of test temperature and displacement rate on semicircular bend test
,”
J. Mater. Civ. Eng.
31
(
7
),
04019104
(
2019
).
16.
P.
Limón-Covarrubias
,
A. D.
Cueva
,
V. G.
Vidal
et al, “
Analysis of the behavior of SMA mixtures with different fillers through the semicircular bend (SCB) fracture test
,”
Materials
12
(
2
),
288
288
(
2019
).
17.
M.
Ameri
,
A.
Mansourian
,
S.
Pirmohammad
et al, “
Mixed mode fracture resistance of asphalt concrete mixtures
,”
Eng. Fract. Mech.
93
,
153
167
(
2012
).
18.
M.
Fakhri
,
A. S.
Siyadati
, and
M.
Aliha
, “
Impact of freeze-thaw cycles on low temperature mixed mode I/II cracking properties of water saturated hot mix asphalt: An experimental study
,”
Constr. Build. Mater.
261
,
119939
(
2020
).
19.
M.
Fakhri
,
E.
Haghighat Kharrazi
,
M. R. M.
Aliha
et al, “
The effect of loading rate on fracture energy of asphalt mixture at intermediate temperatures and under different loading modes
,”
Fratt. Integrità Strutturale
12
(
43
),
113
132
(
2017
).
20.
Q.
Guo
,
Z.
Chen
,
P.
Liu
et al, “
Influence of basalt fiber on mode I and II fracture properties of asphalt mixture at medium and low temperatures
,”
Theor. Appl. Fract. Mech.
112
,
102884
(
2021
).
21.
L. Q.
Luan
,
S. S.
Wen
,
H. D.
Yu
et al, “
Analysis of low-temperature crack extension in carbon nanotube-modified asphalt mixtures
,”
Mater. Rep.
37
(
20
),
96
102
(
2023
).
22.
J.
Wan
,
T.
Han
,
K.
Li
et al, “
Effect of phosphogypsum based filler on the performance of asphalt mortar and mixture
,”
Materials
16
(
6
),
2486
2486
(
2023
).
23.
L.
Ou
,
R.
Li
,
H.
Zhu
et al, “
Upcycling waste phosphogypsum as an alternative filler for asphalt pavement
,”
J. Cleaner Prod.
420
,
138332
(
2023
).
24.
G.
Liu
,
B.
Guan
,
Y.
Liang
et al, “
Preparation of phosphogypsum (PG) based artificial aggregate and its application in the asphalt mixture
,”
Constr. Build. Mater.
356
,
129218
(
2022
).
25.
T.
Fan
,
X.
Wang
,
Y.
Gao
et al, “
Investigating the interaction mechanism and effect of different calcium sulfate whiskers on performance of asphalt binder
,”
Constr. Build. Mater.
224
,
515
533
(
2019
).
26.
Y.
Liu
,
Z.
Yang
, and
H.
Luo
, “
Experimental investigation of eco-friendly anhydrous calcium sulfate whisker and waste cooking oil compound modified asphalt mixture
,”
Materials
16
(
6
),
2409
2409
(
2023
).
27.
Y.
Liu
,
Z.
Yang
,
H.
Luo
et al, “
Preparation, characterization, and properties of asphalt modified by surface-treated anhydrous calcium sulfate whiskers
,”
Constr. Build. Mater.
384
,
131370
(
2023
).
28.
Y.
Liu
and
H.
Luo
, “
Mechanism of asphalt modification by organicized anhydrous calcium sulfate whiskers
,”
J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.)
53
(
02
),
127
135
(
2025
).
29.
Y.
Liu
,
Z.
Yang
, and
H.
Luo
, “
Effects of anhydrous calcium sulfate whisker and waste engine oil on performance of asphalt binder and its mixture
,”
J. Mater. Civ. Eng.
36
(
2
), 4023540.1–4023540.13 (
2024
).
30.
JTG F40-2004
(
2004
).
31.
Q.
Xie
,
M.
Jiang
,
T.
Peng
et al, “
Experimental study on the preparation of anhydrous calcium sulfate whiskers by atmospheric pressure acidification of phosphogypsum
,”
Artif. Cryst. J.
48
(
06
),
1060
1066
(
2019
).
32.
Z.
Lv
,
T.
Hong
,
X.
Nai
et al, “
Inorganic-organic surface modification mechanism of anhydrous calcium sulfate whiskers
,”
J. Inorg. Mater.
32
(
01
),
81
85
(
2017
).
33.
JTG E20–2011
(
2011
).
34.
S. K.
Houshmandi
,
P. I.
Rasi
,
R.
Sajad
et al, “
Fracture toughness of Gilsonite modified HMA mixtures under mixed mode I/II loading at different temperature conditions
,”
Theor. Appl. Fract. Mech.
127
,
104004
(
2023
).
35.
M.
Fakhri
,
E.
Amoosoltani
, and
M.
Aliha
, “
Crack behavior analysis of roller compacted concrete mixtures containing reclaimed asphalt pavement and crumb rubber
,”
Eng. Fract. Mech.
180
,
43
59
(
2017
).
36.
M.
Heidari-Rarani
,
M.
Aliha
,
M.
Shokrieh
et al, “
Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings-An experimental study
,”
Constr. Build. Mater.
64
,
308
315
(
2014
).
37.
M.
Aliha
,
A.
Razmi
, and
A.
Mansourian
, “
The influence of natural and synthetic fibers on low temperature mixed mode I+II fracture behavior of warm mix asphalt (WMA) materials
,”
Eng. Fract. Mech.
182
,
322
336
(
2017
).
38.
M.
Ayatollahi
,
M.
Aliha
, and
H.
Saghafi
, “
An improved semi-circular bend specimen for investigating mixed mode brittle fracture
,”
Eng. Fract. Mech.
78
(
1
),
110
123
(
2011
).
39.
I. L.
Al-Qadi
,
H.
Ozer
,
J.
Lambros
,
A. E.
Khatib
,
P.
Singhvi
et al, “
Testing protocols to ensure performance of high asphalt binder replacement mixes using RAP and RAS
,”
Report No. FHWA-ICT-15-017
(
Illinois Center for Transportation
,
Urbana, IL
,
2015
), p.
80
.
40.
F.
Kaseer
,
F.
Yin
,
E.
Arámbula-Mercado
et al, “
Development of an index to evaluate the cracking potential of asphalt mixtures using the semi-circular bending test
,”
Constr. Build. Mater.
167
,
286
298
(
2018
).
41.
D. J.
Smith
,
M. R.
Ayatollahi
, and
M. J.
Pavier
, “
The role of T-stress in brittle fracture for linear elastic materials under mixed mode loading
,”
Fatigue Fract. Eng. Mater. Struct.
24
(
2
),
137
150
(
2001
).
42.
M.
Aliha
and
M.
Ayatollahi
, “
Analysis of fracture initiation angle in some cracked ceramics using the generalized maximum tangential stress criterion
,”
Int. J. Solids Struct.
49
(
13
),
1877
1883
(
2012
).
43.
M.
Aliha
,
A.
Bahmani
, and
S.
Akhondi
, “
Mixed mode fracture toughness testing of PMMA with different three-point bend type specimens
,”
Eur. J. Mech., A: Solids
58
,
148
162
(
2016
).
44.
Z.
Huang
,
H.
Sun
, and
R.
Li
, “
Research on composite fracture mechanism of rocks based on GMTS criterion
,”
Mech. Quart.
39
(
03
),
638
644
(
2018
).
45.
Y.
Li
,
S.
Dong
,
K.
Lai
et al, “
Numerical and experimental study of I/II composite fracture of three-point bending type specimens
,”
Exp. Mech.
33
(
04
),
557
566
(
2018
).
46.
E. M.
Wu
, “
Application of fracture mechanics to anisotropic plates
,”
J. Appl. Mech.
34
(
4
),
967
974
(
1967
).
47.
D. G.
Hunt
and
W. P.
Croager
, “
Mode II fracture toughness of wood measured by a mixed‐mode test method
,”
J. Mater. Sci. Lett.
1
(
2
),
77
79
(
1982
).
48.
J. M.
Mckinney
, “
Mixed-mode fracture of unidirectional graphite/epoxy composites
,”
J. Compos. Mater.
6
(
1
),
164
166
(
1972
).
49.
M.
Gupta
,
R. C.
Alderliestenl
, and
R.
Benedictus
, “
A review of T-stress and its effects in fracture mechanics
,”
Eng. Fract. Mech.
134
,
218
241
(
2015
).
You do not currently have access to this content.