With the intensification of the global energy crisis, the application of photovoltaic (PV) technology in the field of architecture has gradually become an important direction for sustainable building design. Especially in cold regions, how to choose the right photovoltaic technology and system type to improve energy efficiency is one of the current research hotspots. This paper investigates the performance of building integrated photovoltaics (BIPV) and building applied photovoltaics (BAPV) systems, as well as different photovoltaic (PV) technologies (including c-Si, CIS, and CdTe), for rural residences in cold regions. The study uses a representative rural residence in Xuzhou, China, as the benchmark model, with the installed capacity of the PV system set at 9.0 kW p. By evaluating key performance parameters, including annual power generation, yield factor, performance ratio, and system losses, the study provides a comparison of the BAPV and BIPV systems with different PV technologies. The results reveal that the c-Si-based BIPV system exhibits the lowest annual power generation and performance ratio, with the highest losses. In contrast, the CdTe-based BAPV system performs the best in terms of annual power generation and performance ratio, while also demonstrating the lowest losses. Overall, among these two systems, the BAPV system surpasses the BIPV system in overall efficiency; and at the technological level, CdTe technology outperforms both CIS and c-Si technologies.

1.
Appelbaum
,
J.
and
Maor
,
T.
, “
Dependence of PV module temperature on incident time-dependent solar spectrum
,”
Appl. Sci.
10
,
914
(
2020
).
2.
Asif
,
M.
,
Hassanain
,
M. A.
,
Nahiduzzaman
,
K. M.
, and
Sawalha
,
H.
, “
Techno-economic assessment of application of solar PV in building sector: A case study from Saudi Arabia
,”
Smart Sustainable Built Environ.
8
,
34
52
(
2019
).
3.
Battaglia
,
C.
,
Cuevas
,
A.
, and
De Wolf
,
S.
, “
High-efficiency crystalline silicon solar cells: Status and perspectives
,”
Energy Environ. Sci.
9
,
1552
1576
(
2016
).
4.
Bhattacharya
,
S.
,
Sadhu
,
P. K.
, and
Sarkar
,
D.
, “
Performance evaluation of building integrated photovoltaic system arrays (SP, TT, QT, and TCT) to improve maximum power with low mismatch loss under partial shading
,”
Microsyst. Technol.
30
,
583
597
(
2024
).
5.
Byungchil
,
O.
, “
The economic feasibility of building-integrated photovoltaics system installed on the roof of residential building—Focused on comparison with construction cost of BAPV system depend on roof finishing materials
,”
KIEAE J.
71
,
15
21
(
2017
).
6.
Choi
,
W. J.
,
Joo
,
H. J.
,
Park
,
J.-W.
,
Kim
,
S.
, and
Lee
,
J.-B.
, “
Power generation performance of building-integrated photovoltaic systems in a zero energy building
,”
Energies
12
,
2471
(
2019
).
7.
Cronemberger
,
J.
,
Corpas
,
M. A.
,
Cerón
,
I.
,
Caamaño-Martín
,
E.
, and
Sánchez
,
S. V.
, “
BIPV technology application: Highlighting advances, tendencies and solutions through Solar Decathlon Europe houses
,” in Science Behind and Beyond the Solar Decathlon Europe (2012), [
Energy Build.
83
,
44
56
(
2014
)].
8.
Dong
,
Z.
,
Zhao
,
K.
,
Liu
,
Y.
, and
Ge
,
J.
, “
Performance investigation of a net-zero energy building in hot summer and cold winter zone
,”
J. Build. Eng.
43
,
103192
(
2021
).
9.
Ebhota
,
W. S.
and
Tabakov
,
P. Y.
, “
Influence of photovoltaic cell technologies and elevated temperature on photovoltaic system performance
,”
Ain Shams Eng. J.
14
,
101984
(
2023
).
10.
Elhabodi
,
T. S.
,
Yang
,
S.
,
Parker
,
J.
,
Khattak
,
S.
,
He
,
B.-J.
, and
Attia
,
S.
, “
A review on BIPV-induced temperature effects on urban heat islands
,”
Urban Clim.
50
,
101592
(
2023
).
11.
UN Environment Programme
,
Global Status Report for Buildings and Construction
(
UN Environment Programme
,
2024
).
12.
Faiman
,
D.
, “
Assessing the outdoor operating temperature of photovoltaic modules
,”
Prog. Photovoltaics
16
,
307
315
(
2008
).
13.
Ghosh
,
A.
, “
Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for adaptive less energy-hungry building's skin: A comprehensive review
,”
J. Cleaner Prod.
276
,
123343
(
2020
).
14.
Goossens
,
D.
,
Goverde
,
H.
, and
Catthoor
,
F.
, “
Effect of wind on temperature patterns, electrical characteristics, and performance of building-integrated and building-applied inclined photovoltaic modules
,”
Sol. Energy
170
,
64
75
(
2018
).
15.
General Administration of Quality Supervision
, Inspection and Quarantine of the People's Republic of China, “
Code for thermal design of civil building,” Report No. GB 50176-2016
(
2016
).
16.
Huld
,
T.
,
Friesen
,
G.
,
Skoczek
,
A.
,
Kenny
,
R. P.
,
Sample
,
T.
,
Field
,
M.
, and
Dunlop
,
E. D.
, “
A power-rating model for crystalline silicon PV modules
,”
Sol. Energy Mater. Sol. Cells
95
,
3359
3369
(
2011
).
17.
See https://www.irena.org/Publications/2024/Mar/Renewable-capacity-statistics-2024 for
IRENA
,
Renewable capacity statistics 2024
(
2024
) (accessed 8 July 2024).
18.
Jiang
,
W.
,
Ju
,
Z.
,
Tian
,
H.
,
Liu
,
Y.
,
Arıcı
,
M.
,
Tang
,
X.
,
Li
,
Q.
,
Li
,
D.
, and
Qi
,
H.
, “
Net-zero energy retrofit of rural house in severe cold region based on passive insulation and BAPV technology
,”
J. Cleaner Prod.
360
,
132198
(
2022
).
19.
Kazem
,
H. A.
,
Khatib
,
T.
,
Sopian
,
K.
, and
Elmenreich
,
W.
, “
Performance and feasibility assessment of a 1.4 kW roof top grid-connected photovoltaic power system under desertic weather conditions
,”
Energy Build.
82
,
123
129
(
2014
).
20.
Kumar
,
N. M.
,
Sudhakar
,
K.
, and
Samykano
,
M.
, “
Performance comparison of BAPV and BIPV systems with c-Si, CIS and CdTe photovoltaic technologies under tropical weather conditions
,”
Case Stud. Therm. Eng.
13
,
100374
(
2019
).
21.
Li
,
C.
, “
Comparative performance analysis of grid-connected PV power systems with different pv technologies in the hot summer and cold winter zone
,”
Int. J. Photoenergy
2018
,
83075631
(
2018a
).
22.
Li
,
C.
,
Zhou
,
D.
, and
Zheng
,
Y.
, “
Techno-economic comparative study of grid-connected PV power systems in five climate zones, China
,”
Energy
165
,
1352
1369
(
2018b
).
23.
Li
,
C.
,
Zhang
,
W.
,
Tan
,
J.
,
Liu
,
W.
,
Lyu
,
Y.
, and
Tang
,
H.
, “
Energy performance of an innovative bifacial photovoltaic sunshade (BiPVS) under hot summer and warm winter climate
,”
Heliyon
9
,
e18700
(
2023
).
24.
Liu
,
C.
,
Zhang
,
S.
,
Chen
,
X.
,
Xu
,
W.
, and
Wang
,
K.
, “
A comprehensive study of the potential and applicability of photovoltaic systems for zero carbon buildings in Hainan Province, China
,”
Sol. Energy
238
,
371
380
(
2022
).
25.
Liu
,
J.
,
Wu
,
Q.
,
Lin
,
Z.
,
Shi
,
H.
,
Wen
,
S.
,
Wu
,
Q.
,
Zhang
,
J.
, and
Peng
,
C.
, “
A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS
,”
Energy
282
,
128920
(
2023
).
26.
Liu
,
Z.
,
Zhang
,
Y.
,
Yuan
,
X.
,
Liu
,
Y.
,
Xu
,
J.
,
Zhang
,
S.
, and
He
,
B.
, “
A comprehensive study of feasibility and applicability of building integrated photovoltaic (BIPV) systems in regions with high solar irradiance
,”
J. Cleaner Prod.
307
,
127240
(
2021
).
27.
Martín-Chivelet
,
N.
,
Kapsis
,
K.
,
Wilson
,
H. R.
,
Delisle
,
V.
,
Yang
,
R.
,
Olivieri
,
L.
,
Polo
,
J.
,
Eisenlohr
,
J.
,
Roy
,
B.
,
Maturi
,
L.
,
Otnes
,
G.
,
Dallapiccola
,
M.
, and
Upalakshi Wijeratne
,
W. M. P.
, “
Building-Integrated Photovoltaic (BIPV) products and systems: A review of energy-related behavior
,”
Energy Build.
262
,
111998
(
2022
).
28.
Mavromatakis
,
F.
,
Vignola
,
F.
, and
Marion
,
B.
, “
Low irradiance losses of photovoltaic modules
,”
Sol. Energy
157
,
496
506
(
2017
).
29.
Nguyen
,
D. P. N.
,
Neyts
,
K.
, and
Lauwaert
,
J.
, “
Proposed models to improve predicting the operating temperature of different photovoltaic module technologies under various climatic conditions
,”
Appl. Sci.
11
,
7064
(
2021
).
30.
Pan
,
D.
,
Bai
,
Y.
,
Chang
,
M.
,
Wang
,
X.
, and
Wang
,
W.
, “
The technical and economic potential of urban rooftop photovoltaic systems for power generation in Guangzhou, China
,”
Energy Build.
277
,
112591
(
2022
).
31.
Panicker
,
K.
,
Anand
,
P.
, and
George
,
A.
, “
Assessment of building energy performance integrated with solar PV: Towards a net zero energy residential campus in India
,”
Energy Build.
281
,
112736
(
2023
).
32.
Peng
,
C.
,
Huang
,
Y.
, and
Wu
,
Z.
, “
Building-integrated photovoltaics (BIPV) in architectural design in China
,”
Energy Build.
43
,
3592
3598
(
2011
).
33.
Saber
,
E. M.
,
Lee
,
S. E.
,
Manthapuri
,
S.
,
Yi
,
W.
, and
Deb
,
C.
, “
PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings
,”
Energy
71
,
588
595
(
2014
).
34.
Sarkar
,
D.
and
Sadhu
,
P. K.
, “
A novel fixed BIPV array for improving maximum power with low mismatch losses under partial shading
,”
IETE J. Res.
69
,
8423
8443
(
2023a
).
35.
Sarkar
,
D.
and
Sadhu
,
P. K.
, “
Critical comprehensive performance analysis of static BIPV array configurations to reduce mismatch loss and enhance maximum power under partial shading
,”
IETE Tech. Rev.
40
,
465
497
(
2023b
).
36.
Sarkar
,
D.
and
Sadhu
,
P. K.
, “
GMPP improvement with fewer power peaks and lower mismatch losses using a new hybrid BIPV array configuration
,” in
2023 5th International Conference on Energy, Power and Environment: Towards Flexible Green Energy Technologies (ICEPE)
(
IEEE
,
2023c
), pp.
1
6
.
37.
Sarkar
,
D.
and
Sadhu
,
P. K.
, “
Power enhancement by hybrid BIPV arrays with fewer peaks and reduced mismatch losses under partial shading
,” in
2023 3rd International Conference on Intelligent Technologies (CONIT)
(
IEEE
,
2023d
), pp.
1
6
.
38.
Sarkar
,
D.
and
Sadhu
,
P. K.
, “
A new hybrid BIPV array for enhancing maximum power with reduced mismatch losses under extreme partial shading scenarios
,”
Energy Sources. Part A
44
,
5172
5198
(
2022
).
39.
Sharma
,
P.
,
Kolhe
,
M.
, and
Sharma
,
A.
, “
Economic performance assessment of building integrated photovoltaic system with battery energy storage under grid constraints
,”
Renewable Energy
145
,
1901
1909
(
2020
).
40.
Shukla
,
A. K.
,
Sudhakar
,
K.
,
Baredar
,
P.
, and
Mamat
,
R.
, “
BIPV based sustainable building in South Asian countries
,”
Sol. Energy
170
,
1162
1170
(
2018
).
41.
Singh
,
D.
,
Chaudhary
,
R.
, and
Karthick
,
A.
, “
Review on the progress of building-applied/integrated photovoltaic system
,”
Environ. Sci. Pollut. Res.
28
,
47689
47724
(
2021
).
42.
Singh
,
D.
,
Gautam
,
A. K.
, and
Chaudhary
,
R.
, “
Potential and performance estimation of free-standing and building integrated photovoltaic technologies for different climatic zones of India
,”
Energy Built Environ.
3
,
40
55
(
2022
).
43.
Sun
,
T.
,
Shan
,
M.
,
Rong
,
X.
, and
Yang
,
X.
, “
Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images
,”
Appl. Energy
315
,
119025
(
2022
).
44.
Tossa
,
A. K.
,
Soro
,
Y. M.
,
Thiaw
,
L.
,
Azoumah
,
Y.
,
Sicot
,
L.
,
Yamegueu
,
D.
,
Lishou
,
C.
,
Coulibaly
,
Y.
, and
Razongles
,
G.
, “
Energy performance of different silicon photovoltaic technologies under hot and harsh climate
,”
Energy
103
,
261
270
(
2016
).
45.
Tsinghua University Building Energy Research Centre (TUBERC)
,
Annual Report on China Building Efficiency
(
Architecture and Building Press
,
Beijing
,
2020
).
46.
Virtuani
,
A.
and
Strepparava
,
D.
, “
Modelling the performance of amorphous and crystalline silicon in different typologies of building-integrated photovoltaic (BIPV) conditions
,”
Sol. Energy
146
,
113
118
(
2017
).
47.
Wang
,
W.
,
Liu
,
Y.
,
Wu
,
X.
,
Xu
,
Y.
,
Yu
,
W.
,
Zhao
,
C.
, and
Zhong
,
Y.
, “
Environmental assessments and economic performance of BAPV and BIPV systems in Shanghai
,”
Energy Build.
130
,
98
106
(
2016
).
48.
Wei
,
Y.
,
Yu
,
B.
,
Tang
,
B.
,
Liu
,
L.
,
Liao
,
H.
,
Chen
,
J.
,
Sun
,
F.
,
An
,
R.
,
Wu
,
Y.
, and
Tan
,
J.
, “
Roadmap for achieving China's carbon peak and carbon neutrality pathway
,”
J. Beijing Inst. Technol. (Social Sci. Ed.)
24
,
13
26
(
2022
).
49.
Wu
,
Y.
,
Xu
,
M.
,
Tao
,
Y.
,
He
,
J.
,
Liao
,
Y.
, and
Wu
,
M.
, “
A critical barrier analysis framework to the development of rural distributed PV in China
,”
Energy
245
,
123277
(
2022
).
50.
Ye
,
Y.
,
Ye
,
L.
,
Li
,
W.
,
Kang
,
K.
,
Feng
,
X.
,
Liu
,
C.
, and
Li
,
Q.
, “
Preliminary monitoring and performance evaluation of photovoltaic system in rural buildings in severe cold area
,”
Energy Sources, Part A
45
,
2740
2752
(
2023
).
51.
Zhang
,
W.
,
Zhao
,
Y.
,
Huang
,
F.
,
Zhong
,
Y.
, and
Zhou
,
J.
, “
Forecasting the energy and economic benefits of photovoltaic technology in China's rural areas
,”
Sustainability
13
,
8408
(
2021
).
52.
Zomer
,
C. D.
,
Costa
,
M. R.
,
Nobre
,
A.
, and
Rüther
,
R.
, “
Performance compromises of building-integrated and building-applied photovoltaics (BIPV and BAPV) in Brazilian airports
,”
Energy Build.
66
,
607
615
(
2013
).
You do not currently have access to this content.