The offshore energy coupling system represents a promising direction for the future development of the offshore energy. Currently, the offshore wind-wave-hydrogen energy coupling system (OWWHECS) is the most promising project for application at the current stage, with a notable research gap in the employment of multi-criteria decision-making (MCDM) for its site selection. Herein, in this study, we innovatively use the weighted hesitant fuzzy set (WHFS) method to improve the technique for order preference by similarity to ideal solution (TOPSIS) method and construct a MCDM site selection framework tailored for the emerging OWWHECS projects. Initially, a comprehensive criteria system reflecting the unique aspects of the OWWHECS projects is developed across various dimensions. Subsequently, the WHFS is employed to gather criteria's evaluation data, followed by the application of the best-worst method and entropy weighting to assign both subjective and objective weights to the criteria system. The enhanced TOPSIS method is subsequently utilized to prioritize the alternatives, thereby increasing the precision of the rankings. Finally, the validity of the proposed framework is demonstrated through a case study of the offshore regions in Bohai Bay and the Shandong Peninsula, China.

1.
Aboutora
,
H.
,
Saberi
,
M.
,
Asadabadi
,
M. R.
,
Hussain
,
O.
, and
Chang
,
E.
, “
ZBWM: The Z-number extension of Best Worst Method and its application for supplier development
,”
Expert Syst. Appl.
107
,
115
125
(
2018
).
2.
Alghamdi
,
M. A.
,
Alshehri
,
N. O.
, and
Akram
,
M.
, “
Multi-criteria decision-making methods in bipolar fuzzy environment
,”
Int. J. Fuzzy Syst.
20
,
2057
2064
(
2018
).
3.
Ba-abbad
,
M. A.
,
Alrougy
,
I.
, and
Alalweet
,
F.
, “
Techno-economic analysis of implementing pumped hydro energy storage to store solar and wind energy in water-stressed areas
,”
J. Energy Storage
98
,
113024
(
2024
).
4.
Badi
,
I.
,
Pamucar
,
D.
,
Gigovic
,
L.
, and
Tatomirovic
,
S.
, “
Optimal site selection for sitting a solar park using a novel GIS-SWA'TEL model: A case study in Libya
,”
Int. J. Green Energy
18
(
4
),
336
350
(
2021
).
5.
Chen
,
C.
, “
Extensions of the TOPSIS for group decision-making under fuzzy environment
,”
Fuzzy Set Syst.
114
(
1
),
1
9
(
2000
).
6.
Chen
,
Y.
,
Li
,
L.
,
Shen
,
Y.
,
Liu
,
B.
,
Wang
,
D.
, and
Chen
,
S.
, “
Group decision-making framework for site selection of coastal nuclear power plants in a linguistic environment: A sustainability perspective
,”
Int. J. Green Energy
21
(
5
),
1184
(
2021
).
7.
Cheng
,
X.
and
Chen
,
C.
, “
Decision making with intuitionistic fuzzy best-worst method
,”
Expert Syst. Appl.
237
,
121215
(
2024
).
8.
Cui
,
L.
,
Amani
,
S.
,
Gabr
,
M.
,
Kumari
,
W. G. P.
,
Ahmed
,
A.
,
Ozcan
,
H.
,
Horri
,
B. A.
, and
Bhattacharya
,
S.
, “
Synergistic hybrid marine renewable energy harvest system
,”
Energies
17
(
5
),
1240
(
2024
).
9.
Dai
,
Y. H.
,
Lu
,
R. H.
,
Zhang
,
C. Y.
,
Li
,
J. T.
,
Yuan
,
Y. F.
,
Mao
,
Y.
,
Ye
,
C. M.
, and
Cai
,
Z. J.
, “
Zn2+-mediated catalysis for fast-charging aqueous Zn-ion batteries
,”
Nat. Catal.
7
(
7
),
776
784
(
2024
).
10.
Dolores
,
E. M.
,
Javier
,
D. J.
, and
Lopez
,
J. S.
, “
Why offshore wind energy?
,”
Renewable Energy
36
(
2
),
444
450
(
2011
).
11.
Dong
,
H. B.
,
Hu
,
X. Y.
,
Liu
,
R. R.
,
Ouyang
,
M. Z.
,
He
,
H. Z.
,
Wang
,
T. L.
,
Gao
,
X.
, and
Dai
,
Y. H.
, “
Bio-inspired polyanionic electrolytes for highly stable zinc-ion batteries
,”
Angew. Chem. Int. Ed.
62
(
41
),
e202311268
(
2023
).
12.
Gao
,
J.
,
Li
,
X.
,
Guo
,
F.
,
Huang
,
X.
,
Men
,
H.
, and
Li
,
M.
, “
Site selection decision of waste-to-energy projects based on an extended cloud-TODIM method from the perspective of low-carbon
,”
J. Clean Prod.
303
,
127036
(
2021
).
13.
Gao
,
J. W.
,
Wang
,
Y. P.
,
Huang
,
N. B.
,
Wei
,
L. L.
, and
Zhang
,
Z. X.
, “
Optimal site selection study of wind-photovoltaic-shared energy storage power stations based on GIS and multi-criteria decision making: A two-stage framework
,”
Renewable Energy
201
,
1139
1162
(
2022
).
14.
Gao
,
P.
and
Suo
,
B.
, “
Experimental design and staged PSO-Kriging modeling based on weighted hesitant fuzzy set
,”
J. Comput.
44
(7),
1
10
(
2024
).
15.
Goit
,
J. P.
and
Önder
,
A.
, “
The effect of coastal terrain on nearshore offshore wind farms: A large-eddy simulation study
,”
J. Renewable Sustainable Energy
14
(
4
),
043304
(
2022
).
16.
Gorsevski
,
P. V.
,
Donevska
,
K. R.
,
Mitrovski
,
C. D.
, and
Frizado
,
J. P.
, “
Integrating multi-criteria evaluation techniques with geographic information systems for landfill site selection: A case study using ordered weighted average
,”
Waste Manage.
32
(
2
),
287
296
(
2012
).
17.
Gündogdu
,
F. K.
and
Kahraman
,
C.
, “
Spherical fuzzy sets and spherical fuzzy TOPSIS method
,”
J. Intell. Fuzzy Syst.
36
(
1
),
337
352
(
2019
).
18.
Guo
,
Y.
,
Wang
,
H.
, and
Lian
,
J.
, “
Review of integrated installation technologies for offshore wind turbines: Current progress and future development trends
,”
Energy Convers. Manage.
255
,
115319
(
2022
).
19.
Hadi-Vencheh
,
A.
and
Mirjaberi
,
M.
, “
Fuzzy inferior ratio method for multiple attribute decision making problems
,”
Inform. Sci.
277
,
263
272
(
2014
).
20.
Jain
,
A.
,
Mehta
,
R.
, and
Mittal
,
S. K.
, “
Modeling impact of solar radiation on site selection for solar PV power plants in India
,”
Int. J. Green Energy
8
(
4
),
486
498
(
2011
).
21.
Klemmer
,
K. S.
,
Condon
,
E. P.
, and
Howland
,
M. F.
, “
Evaluation of wind resource uncertainty on energy production estimates for offshore wind farms
,”
J. Renewable Sustainable Energy
16
(
1
),
013302
(
2024
).
22.
Lin
,
M.
,
Chen
,
Z.
,
Xu
,
Z.
,
Gou
,
X.
, and
Herrera
,
F.
, “
Score function based on concentration degree for probabilistic linguistic term sets: An application to TOPSIS and VIKOR
,”
Inform. Sci.
551
,
270
290
(
2021
).
23.
Liu
,
X.
,
Li
,
N.
,
Mu
,
H.
,
Li
,
M.
, and
Liu
,
X. X.
, “
Multiobjective optimization and parameters study of hybrid offshore wind and pumped hydrostorage power system: Modeling and case study
,”
J. Renewable Sustainable Energy
13
(
4
),
044103
(
2021
).
24.
Mao
,
Q.
,
Fan
,
J.
,
Lv
,
J.
,
Gao
,
Y. Q.
,
Chen
,
J. J.
, and
Guo
,
M. X.
, “
A decision framework of offshore photovoltaic power station site selection based on Pythagorean fuzzy ELECTRE-III method
,”
J. Renewable Sustainable Energy
16
(
2
),
023502
(
2024
).
25.
Mondino
,
E. B.
,
Fabrizio
,
E.
, and
Chiabrando
,
R.
, “
Site selection of large ground-mounted photovoltaic plants: A GIS decision support system and an application to Italy
,”
Int. J. Green Energy
12
(
5
),
515
525
(
2015
).
26.
Omrani
,
H.
,
Alizadeh
,
A.
, and
Naghizadeh
,
F.
, “
Incorporating decision makers' preferences into DEA and common weight DEA models based on the best–worst method (BWM)
,”
Soft Comput.
24
,
3989
4002
(
2020
).
27.
Pérez-Vigueras
,
M.
,
Sotelo-Boyás
,
R.
,
González-Huerta
,
R. D.
, and
Banuelos-Ruedas
,
F.
, “
Feasibility analysis of green hydrogen production from oceanic energy
,”
Heliyon
9
,
e20046
(
2023
).
28.
Rezaei
,
J.
, “
Best-worst multi-criteria decision-making method
,”
Omega
53
,
49
57
(
2015
).
29.
Rezaei
,
J.
, “
Best-worst multi-criteria decision-making method: Some properties and a linear model
,”
Omega
64
,
126
130
(
2016
).
30.
Saenz-Aguirre
,
A.
,
Saenz
,
J.
,
Ulazia
,
A.
, and
Ibarra-Berastegui
,
G.
, “
Optimal strategies of deployment of far offshore co-located wind-wave energy farms
,”
Energy Convers. Manage.
251
,
114914
(
2022
).
31.
Sapkota
,
K.
,
Shabbiruddin
, and
Sherpa
,
K. S.
, “
Wind farm site suitability assessment & validation using geospatially explicit multi-criteria approach: A case study of South Sikkim, India
,”
Int. J. Green Energy
21
(
2
),
300
327
(
2024
).
32.
Senapati
,
T.
and
Yager
,
R. R.
, “
Fermatean fuzzy sets
,”
J. Ambient Intell. Human. Comput.
11
,
663
674
(
2020
).
33.
Song
,
H.
,
Yu
,
T.
,
Shi
,
H.
,
Wang
,
Y.
, and
Zhang
,
Z.
, “
Study on hydrodynamic characteristics of a hybrid wind-wave energy system combing a composite bucket foundation and wave energy converter
,”
Phys. Fluids
35
(
8
),
087136
(
2023
).
34.
Tang
,
M.
,
Wang
,
T. D.
, and
Peng
,
H. H.
, “
An improved Taguchi multi-criteria decision-making method based on the hesitant fuzzy correlation coefficient and its application in quality evaluation
,”
J. Ambient Intell. Human. Comput.
12
,
8241
8254
(
2021
).
35.
Wang
,
C.
,
Nguyen
,
H. K.
, and
Nhieu
,
N. L.
, “
A prospect theory extension of data envelopment analysis model for wave-wind energy site selection in New Zealand
,”
Manage. Decis. Econ.
45
(
1
),
539
553
(
2024a
).
36.
Wang
,
J.
,
Chen
,
Z.
, and
Zhang
,
F.
, “
A review of the optimization design and control for ocean wave power generation systems
,”
Energies
15
(
1
),
102
(
2021
).
37.
Wang
,
L.
,
Shen
,
Q.
, and
Zhu
,
L.
, “
Dual hesitant fuzzy power aggregation operators based on Archimedean t-conorm and t-norm and their application to multiple attribute group decision making
,”
Appl. Soft Comput.
38
,
23
50
(
2016
).
38.
Wang
,
Y.
,
Liu
,
P.
, and
Yao
,
Y.
, “
BMW-TOPSIS: A generalized TOPSIS model based on three-way decision
,”
Inform. Sci.
607
,
799
818
(
2022
).
39.
Wang
,
Z.
,
Wang
,
H.
,
Sant
,
T.
,
Zhao
,
Z.
,
Carriveau
,
R.
,
Ting
,
D. S. K.
,
Li
,
P.
,
Zhang
,
T.
, and
Xiong
,
W.
, “
Subsea energy storage as an enabler for floating offshore wind hydrogen production: Review and perspective
,”
Int. J. Hydrogen Energy
71
,
1266
1282
(
2024b
).
40.
Wu
,
Y.
,
Deng
,
Z.
,
Tao
,
Y.
,
Wang
,
L.
,
Liu
,
F.
, and
Zhou
,
J.
, “
Site selection decision framework for photovoltaic hydrogen production project using BWM-CRITIC-MABAC: A case study in Zhangjiakou
,”
J. Clean Prod.
324
,
129233
(
2021
).
41.
Wu
,
Y. N.
,
Chu
,
H.
,
Dong
,
H. X.
,
Xu
,
C. B.
,
Chen
,
W. J.
, and
Wu
,
G. D.
, “
Optimal site selection of rural wind–photovoltaic-storage station from a sustainable development perspective
,”
Energy Rep.
8
,
8381
8395
(
2022
).
42.
Wu
,
Y.
,
Zhou
,
J.
,
Zhou
,
X.
,
Hu
,
Z.
,
Cai
,
Q.
, and
Yang
,
S.
, “
Site selection of crop straw cogeneration project under intuitionistic fuzzy environment: A four-stage decision framework from the perspective of circular economy
,”
J. Clean Prod.
395
,
136431
(
2023
).
43.
Xu
,
L.
,
Zhang
,
C.
, and
Zhu
,
X.
, “
Decoupling control of a dual‐stator linear and rotary permanent magnet generator for offshore joint wind and wave energy conversion system
,”
IET Electr. Power Appl.
14
(
4
),
561
569
(
2020
).
44.
Yang
,
X.
,
Zhang
,
Y.
,
Wang
,
S.
, and
Chen
,
H.
, “
Improved model-free adaptive control considering wind speed and platform motion for floating offshore wind turbines
,”
J. Renewable Sustainable Energy
15
(
3
),
033309
(
2023
).
45.
Zeng
,
W.
,
Ma
,
R.
,
Li
,
D.
,
Yin
,
Q.
,
Xu
,
Z.
, and
Khalil
,
A. M.
, “
Novel operations of weighted hesitant fuzzy sets and their group decision making application
,”
AIMS Math.
7
(
8
),
14117
14138
(
2022
).
46.
Zhang
,
H.
,
Zhang
,
N.
, and
Cao
,
X.
, “
Conceptualization and dynamic response of an integrated system with a semi-submersible floating wind turbine and two types of wave energy converters
,”
Ocean Eng.
269
,
113517
(
2023
).
47.
Zhang
,
Z.
and
Wu
,
C.
, “
Weighted hesitant fuzzy sets and their application to multi-criteria decision making
,”
Br. J. Math. Comput. Sci.
4
(
8
),
1091
1123
(
2014
).
48.
Zhou
,
Q.
,
Ye
,
C.
, and
Geng
,
X.
, “
A hybrid probabilistic linguistic term set decision-making evaluation method and its application in the site selection of offshore wind power station
,”
Ocean Eng.
266
,
112959
(
2022a
).
49.
Zhou
,
X.
,
Huang
,
Z.
,
Wang
,
H.
,
Yin
,
G.
,
Bao
,
Y.
, and
Dong
,
Q.
, “
Site selection for hybrid offshore wind and wave power plants using a four-stage framework: A case study in Hainan, China
,”
Ocean Coast Manage.
218
,
106035
(
2022b
).
You do not currently have access to this content.