This paper presents a novel approach for the estimation of equivalent circuit parameters of proton exchange membrane fuel cells using the Walrus optimization algorithm (WaOA) and its hybrid variants: SaWaOA, combined with simulated annealing and CWaOA, incorporating chaotic sequences. The evaluation was conducted on two types of fuel cells, Ballard-Mark-V 5 kW and BCS 500 W. To ensure an objective assessment, validation of the results was performed using statistical measures: root mean square error (RMSE), sum of squared errors (SSE), mean absolute error, and mean absolute percentage error. The testing was carried out by implementing the recommended optimization algorithm across eight different variants, where the boundaries of the parameters λ and Rc were varied during estimation. Results indicate that WaOA and its hybrid variants achieve high precision in parameter estimation, evidenced by reduced RMSE and SSE values compared to methods from the literature. Additionally, the influence of changing all parameters on estimation precision was analyzed, as well as the effects of varying operating temperatures and pressures on the output characteristics of the tested fuel cells. The proposed WaOA can significantly enhance the accuracy of parameter estimation for fuel cells in various operating conditions, opening possibilities for its broader application in industrial and transport systems.

1.
T.
Kalt
, “
Transition conflicts: A Gramscian political ecology perspective on the contested nature of sustainability transitions
,”
Environ. Innovation Soc. Transitions
50
,
100812
(
2024
).
2.
J. L.
Holechek
,
H. M. E.
Geli
,
M. N.
Sawalhah
, and
R.
Valdez
, “
A global assessment: Can renewable energy replace fossil fuels by 2050?
,”
Sustainability
14
,
4792
(
2022
).
3.
D.
Choi
,
S.
Park
,
Y. S.
Kang
, and
S. J.
Yoo
, “
Current perspectives on rational design of anode electrocatalysts exhibiting CO-tolerance for fuel cells
,”
Curr. Opin. Electrochem.
48
,
101582
(
2024
).
4.
L.
Giorgi
and
F.
leccese
, “
Fuel cells: Technologies and applications
,”
Open Fuel Cells J.
2013
,
6
.
5.
X.
Zhang
,
T.
Zhang
,
H.
Chen
, and
Y.
Cao
, “
A review of online electrochemical diagnostic methods of on-board proton exchange membrane fuel cells
,”
Appl. Energy
286
,
116481
(
2021
).
6.
M.
Calasan
,
M.
Micev
,
H.
Hasanien
, and
S. H. E.
Andel Allem
, “
PEM fuel cells: Two novel approaches for mathematical modeling and parameter estimation
,”
Energy
290
,
130130
(
2024
).
7.
H.
Ashraf
,
M. M.
Elkholy
,
S. O.
Abdellatif
, and
A. A.
El-Fergany
, “
Accurate emulation of steady-state and dynamic performances of PEM fuel cells using simplified models
,”
Sci. Rep.
13
,
19532
(
2023
).
8.
M.
Dehghani
,
E.
Trojovská
, and
P.
Trojovský
, “
A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process
,”
Sci. Rep.
12
,
9924
(
2022
).
9.
P.
Trojovský
and
M.
Dehghani
, “
A new optimization algorithm based on mimicking the voting process for leader selection
,”
PeerJ Comput. Sci.
8
,
e976
(
2022
).
10.
A. J.
Riad
,
H. M.
Hasanien
,
R. A.
Turky
, and
A. H.
Yakout
, “
Identifying the PEM fuel cell parameters using artificial rabbits optimization algorithm
,”
Sustainability
15
(
5
),
4625
(
2023
).
11.
M.
Ćalasan
,
S. H. E.
Abdel Aleem
,
H. M.
Hasanien
,
Z. M.
Alaas
, and
Z. M.
Ali
, “
An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function
,”
Energy
264
,
126165
(
2023
).
12.
H.
Ashraf
,
S. O.
Abdellatif
,
M. M.
Elkholy
, and
A. A.
El-Fergany
, “
Honey badger optimizer for extracting the ungiven parameters of PEMFC model: Steady-state assessment
,”
Energy Convers. Manage.
258
,
115521
(
2022
).
13.
H. M.
Hasanien
et al, “
Precise modeling of PEM fuel cell using a novel enhanced transient search optimization algorithm
,”
Energy
247
,
123530
(
2022
).
14.
O.
Hachana
and
A. A.
El-Fergany
, “
Efficient PEM fuel cells parameters identification using hybrid artificial bee colony differential evolution optimizer
,”
Energy
250
,
123830
(
2022
).
15.
B.
Mohanty
et al, “
Parameters identification of proton exchange membrane fuel cell model based on the lightning search algorithm
,”
Energies
15
(
21
),
7893
(
2022
).
16.
S. I.
Selem
,
H. M.
Hasanien
, and
A. A.
El-Fergany
, “
Parameters extraction of PEMFC's model using manta rays foraging optimizer
,”
Int. J. Energy Res.
44
(
6
),
4629
4640
(
2020
).
17.
E. A.
Gouda
,
M. F.
Kotb
, and
A. A.
El-Fergany
, “
Investigating dynamic performances of fuel cells using pathfinder algorithm
,”
Energy Convers. Manage.
237
,
114099
(
2021
).
18.
S. R.
Fahim
et al, “
Parameter identification of proton exchange membrane fuel cell based on hunger games search algorithm
,”
Energies
14
(
16
),
5022
(
2021
).
19.
M.
Fawzi
,
A. A.
El-Fergany
, and
H. M.
Hasanien
, “
Effective methodology based on neural network optimizer for extracting model parameters of PEM fuel cells
,”
Int. J. Energy Res.
43
(
14
),
8136
8147
(
2019
).
20.
A. H.
Yakout
,
H. M.
Hasanien
, and
H.
Kotb
, “
Proton exchange membrane fuel cell steady state modeling using marine predator algorithm optimizer
,”
Ain Shams Eng. J.
12
,
3765
3774
(
2021
).
21.
A. A.
El-Fergany
,
H. M.
Hasanien
, and
A. M.
Agwa
, “
Semi-empirical PEM fuel cells model using whale optimization algorithm
,”
Energy Convers. Manage.
201
,
112197
(
2019
).
22.
A. A.
El-Fergany
, “
Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser
,”
IET Renewable Power Gener.
12
,
9
17
(
2018
).
23.
M. H.
Qais
,
H. M.
Hasanien
,
R. A.
Turky
,
S.
Alghuwainem
,
K. H.
Loo
et al, “
Optimal PEM fuel cell model using a novel circle search algorithm
,”
Electronics
11
,
1808
(
2022
).
24.
E. A.
Gouda
,
M. F.
Kotb
, and
A. A.
El-Fergany
, “
Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: Steady-state performance and analysis
,”
Energy
221
,
119836
(
2021
).
25.
R. M.
Rizk-Allah
and
A. A.
El-Fergany
, “
Artificial ecosystem optimizer for parameters identification of proton exchange membrane fuel cells model
,”
Int. J. Hydrogen Energy
46
(
75
),
37612
37627
(
2021
).
26.
M.
Kandidayeni
,
A.
Macias
,
A.
Khalatbarisoltani
,
L.
Boulon
, and
S.
Kelouwani
, “
Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms
,”
Energy
183
,
912
925
(
2019
).
27.
M. A. M.
Shaheen
,
H. M.
Hasanien
,
M. S.
El Moursi
, and
A. A.
El-Fergany
, “
Precise modeling of PEM fuel cell using improved chaotic MayFly optimization algorithm
,”
Int. J. Energy Res.
45
,
18754
18769
(
2021
).
28.
P.
Trojovský
and
M.
Dehghani
, “
A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior
,”
Sci. Rep.
13
(
1
),
8775
(
2023
).
29.
S.
Vujosevic
,
M.
Calasan
, and
M.
Micev
, “
Hybrid walrus optimization algorithm techniques for optimized parameter estimation in single, double, and triple diode solar cell models
,”
AIP Adv.
14
,
085116
(
2024
).
30.
M.
Micev
,
M.
Calasan
,
Z.
Ali
,
H.
Hasanien
, and
S. H. E.
Abdel Aleem
, “
Optimal design of automatic voltage regulation controller using hybrid simulated annealing – Manta ray foraging optimization algorithm
,”
Ain Shams Eng. J.
12
(
1
),
641
657
(
2021
).
31.
M.
Ćalasan
,
D.
Jovanović
,
V.
Rubežić
,
S.
Mujović
, and
S.
Đukanović
, “
Estimation of single-diode and two-diode solar cell parameters by using a chaotic optimization approach
,”
Energies
12
,
4209
(
2019
).
You do not currently have access to this content.