Photovoltaic systems, as a critical component of microgrids, require accurate power forecasting for the optimization of microgrid scheduling. To enhance data feature representation and capture the fluctuating patterns of photovoltaic power, an improved power ramp feature construction method is proposed for feature engineering and selection, thereby improving the quality of photovoltaic data. Furthermore, a photovoltaic power prediction model based on a convolutional attention long short-term memory hybrid framework is employed to enhance forecasting performance. Building upon this, a novel photovoltaic power dynamic interval prediction method based on power ramp clustering is proposed to address the issues of low prediction accuracy and excessively broad ranges in existing photovoltaic power interval prediction methods. First, an improved power ramp calculation formula is used to identify and statistically analyze the power ramp, clustering daily data into four weather categories—sunny, partly cloudy, cloudy, and rainy—thus enhancing the accuracy of similar day clustering. Next, the shape dynamic time warping algorithm is applied to select similar days for the target day, and the dynamic interval calculation is performed to determine the power range. Finally, experimental analysis is conducted using real photovoltaic output historical data from a region in Xinjiang, China. The results demonstrate that the proposed method improves prediction accuracy, effectively reduces the width of the predicted range, and more accurately captures the fluctuating trends of photovoltaic power.

1.
G. S.
Thirunavukkarasu
,
M.
Seyedmahmoudian
,
E.
Jamei
,
B.
Horan
,
S.
Mekhilef
, and
A.
Stojcevski
, “
Role of optimization techniques in microgrid energy management systems-A review
,”
Energy Strategy Rev.
43
,
100899
(
2022
).
2.
S.
Chandak
and
P. K.
Rout
, “
The implementation framework of a microgrid: A review
,”
Int. J. Energy Res.
45
(
3
),
3523
3547
(
2021
).
3.
M.
Uddin
,
H. D.
Mo
,
D. Y.
Dong
,
S.
Elsawah
,
J. G.
Zhu
, and
J. M.
Guerrero
, “
Microgrids: A review, outstanding issues and future trends
,”
Energy Strategy Rev.
49
,
101127
(
2023
).
4.
R.
Wang
,
Q.
Gao
, and
J.
Lu
, “Short-term photovoltaic power prediction based on CEEMDAN-LSSVM-ARIMA model,”
Transducer Microsyst. Technol.
41
(
5
),
118
122
(
2022
).
5.
X.
Wang
,
K.
Huang
,
Y.
Zheng
,
L.
Li
,
Y.
Lang
, and
H.
Wu
, “
Short-term forecasting method of photovoltaic output power based on PNN/ PCA/SS-SVR
,”
Autom. Electr. Power Syst.
40
(
17
),
156
162
(
2016
).
6.
P.
Kumari
and
D.
Toshniwal
, “
Deep learning models for solar irradiance forecasting: A comprehensive review
,”
J. Cleaner Prod.
318
,
128566
(
2021
).
7.
Y.
Wang
,
D.
Hao
,
H.
Xue
, and
Y.
Mi
, “
Combined forecasting approach of photovoltaic power based on cloud images and chaotic characteristics
,”
Acta Energ. Sol. Sin.
44
(
12
),
74
81
(
2023
).
8.
H.
Wang
,
N.
Zhang
,
E.
Du
,
J.
Yan
,
S.
Han
, and
Y.
Liu
, “
A comprehensive review for wind, solar, and electrical load forecasting methods
,”
Global Energy Interconnect.
5
(
1
),
9
30
(
2022
).
9.
L.
Liu
et al, “
Prediction of short-term PV power output and uncertainty analysis
,”
Appl. Energy
228
,
700
711
(
2018
).
10.
T.
Limouni
,
R.
Yaagoubi
,
K.
Bouziane
,
K.
Guissi
, and
E.
Baali
, “
Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model
,”
Renewable Energy
205
,
1010
1024
(
2023
).
11.
F.
Lin
,
Y.
Zhang
,
K.
Wang
,
J. X.
Wang
, and
M. R.
Zhu
, “
Parametric probabilistic forecasting of solar power with fat-tailed distributions and deep neural networks
,”
IEEE Trans. Sustainable Energy
13
(
4
),
2133
2147
(
2022
).
12.
S. A.
Fatemi
,
A.
Kuh
, and
M.
Fripp
, “
Parametric methods for probabilistic forecasting of solar irradiance
,”
Renewable Energy
129
,
666
676
(
2018
).
13.
M.
Ma
,
B.
He
,
R. J.
Shen
,
Y. Y.
Wang
, and
N. B.
Wang
, “
An adaptive interval power forecasting method for photovoltaic plant and its optimization
,”
Sustainable Energy Technol. Assess.
52
,
102360
(
2022
).
14.
S.
Song
,
Y.
Jiang
, and
B.
Liu
, “
Improved TCN model and its application in short-term photovoltaic power interval prediction
,”
Appl. Res. Comput.
40
(
10
),
3064
3069
(
2023
).
15.
T.
Xu
et al, “
Robust optimisation of electricity-heating integrated energy system based on data-driven PV interval estimation
,”
IET Energy Syst. Integr.
5
(
4
),
462
476
(
2023
).
16.
Y.
Zhao
,
S.
Gao
,
D.
Li
,
S.
Lin
,
F.
Yang
, and
X.
Huang
, “
Short-term interval probability prediction of photovoltaic power based on weather similarity clustering and quantile regression neural network
,”
Autom. Electr. Power Syst.
47
(
23
),
152
161
(
2023
).
17.
M.
Yu
et al, “
Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and WOA-BiLSTM-Attention and considering weather classification
,”
Energy
275
,
127348
(
2023
).
18.
C.
Zhang
,
G.
Lin
, and
Y.
Kuang.
Short-term PV output interval prediction based on MEEMD-QUATRE-BILSTM
,”
Acta Energ. Sol. Sin.
44
(
11
),
40
54
(
2023
).
19.
X.
Han
,
X.
Wang
,
M.
Yang
, and
Y.
Yu
, “
Review and prospect of renewable energy ramp events
,”
J. Shandong Univ.
51
(
5
),
53
62
(
2021
).
20.
H.
Kuang
,
J.
Wang
,
H.
Zhang
,
G.
Zhu
, and
S.
Zhang
, “
A novel wind power climbing section identification method
,”
Power Syst. Technol.
43
(
5
),
1752
1759
(
2019
).
21.
A.
Agga
,
A.
Abbou
,
M.
Labbadi
, and
Y.
El Houm
, “
Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models
,”
Renewable Energy
177
,
101
112
(
2021
).
22.
Z. A.
Khan
,
T.
Hussain
, and
S. W.
Baik
, “
Dual stream network with attention mechanism for photovoltaic power forecasting
,”
Appl. Energy
338
,
120916
(
2023
).
23.
D.
Yang
, “
Making reference solar forecasts with climatology, persistence, and their optimal convex combination
,”
Sol. Energy
193
,
981
985
(
2019
).
24.
D. Z.
Yang
,
J.
Kleissl
,
C. A.
Gueymard
,
H. T. C.
Pedro
, and
C. F. M.
Coimbra
, “
History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining
,”
Sol. Energy
168
,
60
101
(
2018
).
You do not currently have access to this content.