Developing and using solar energy has become an important strategic decision for sustainable development in many countries. Short-term changes in solar irradiance can affect the safety and stability of photovoltaic and solar thermal power plants, so the accuracy of solar irradiance prediction has attracted significant attention. This paper proposes a short-term irradiance prediction method based on an improved complete ensemble empirical mode decomposition with adaptive noise and the partial differential equation model. Image feature information is obtained from ground-based sky images, and two ordinary differential equation (ODE) networks are used to process historical irradiance information and exogenous variables, including historical meteorological and sky images information. Using the ODE solver, the temporal pattern of the target sequence and the serial correlation between the exogenous variables are obtained, and an irradiance prediction model based on multivariate time series is established. The proposed method is evaluated using a public dataset from California, USA, and locally collected datasets. The experimental results show that the proposed method has high prediction accuracy and significantly improves the estimation of solar irradiance.

1.
E.
Khodadadi
, “
Investigating the impact of renewable energy development on world economy
,” in
3rd International Congress on Engineering, Technology & Innovation, Darmstadt, Germany
,
2021
.
2.
J.
Huang
,
M.
Korolkiewicz
,
M.
Agrawal
, and
J.
Boland
, “
Forecasting solar radiation on an hourly time scale using a coupled autoregressive and dynamical system (cards) model
,”
Sol. Energy
87
,
136
149
(
2013
).
3.
A.
Ahmad
,
T. N.
Anderson
, and
T. T.
Lie
, “
Hourly global solar irradiation forecasting for New Zealand
,”
Sol. Energy
122
,
1398
1408
(
2015
).
4.
I.
Colak
,
M.
Yesilbudak
,
N.
Genc
, and
R.
Bayindir
, “
Multi-period prediction of solar radiation using arma and arima models
,” in
2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)
(
IEEE
,
2015
), pp.
1045
1049
.
5.
X. G.
Agoua
,
R.
Girard
, and
G.
Kariniotakis
, “
Probabilistic models for spatio-temporal photovoltaic power forecasting
,”
IEEE Trans. Sustainable Energy
10
(
2
),
780
789
(
2019
).
6.
A.
Zendehboudi
,
M. A.
Baseer
, and
R.
Saidur
, “
Application of support vector machine models for forecasting solar and wind energy resources: A review
,”
J. Cleaner Prod.
199
,
272
285
(
2018
).
7.
A. K.
Yadav
and
S. S.
Chandel
, “
Solar radiation prediction using artificial neural network techniques: A review
,”
Renewable Sustainable Energy Rev.
33
,
772
781
(
2014
).
8.
T.
Limouni
,
R.
Yaagoubi
,
K.
Bouziane
,
K.
Guissi
, and
E. H.
Baali
, “
Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model
,”
Renewable Energy
205
,
1010
1024
(
2023
).
9.
S.
Ghimire
,
R. C.
Deo
,
N.
Raj
, and
J.
Mi
, “
Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms
,”
Appl. Energy
253
,
113541
(
2019
).
10.
W.
Kong
,
Y.
Jia
,
Z. Y.
Dong
,
K.
Meng
, and
S.
Chai
, “
Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting
,”
Appl. Energy
280
,
115875
(
2020
).
11.
F.
Wang
,
Z.
Xuan
,
Z.
Zhen
,
Y.
Li
,
K.
Li
et al, “
A minutely solar irradiance forecasting method based on real-time sky image-irradiance mapping model
,”
Energy Convers. Manage.
220
,
113075
(
2020
).
12.
X.
Zhang
,
Z.
Zhen
,
Y.
Sun
,
Y.
Zhang
,
H.
Ren
et al, “
Solar irradiance prediction interval estimation and deterministic forecasting model using ground-based sky image
,” in
2022 IEEE/IAS 58th Industrial and Commercial Power Systems Technical Conference (I&CPS)
(
IEEE
,
2022
), pp.
1
8
.
13.
S.-A.
Logothetis
,
V.
Salamalikis
,
S.
Wilbert
,
J.
Remund
,
L. F.
Zarzalejo
et al, “
Benchmarking of solar irradiance nowcast performance derived from all-sky imagers
,”
Renewable Energy
199
,
246
261
(
2022
).
14.
S.-A.
Logothetis
,
V.
Salamalikis
,
B.
Nouri
,
J.
Remund
,
L. F.
Zarzalejo
et al, “
Solar irradiance ramp forecasting based on all-sky imagers
,”
Energies
15
(
17
),
6191
(
2022
).
15.
Z.
Zhen
,
X.
Zhang
,
S.
Mei
,
X.
Chang
,
H.
Chai
et al, “
Ultra-short-term irradiance forecasting model based on ground-based cloud image and deep learning algorithm
,”
IET Renewable Power Gener.
16
(
12
),
2604
2616
(
2022
).
16.
Z.
Wang
,
L.
Wang
,
C.
Huang
, and
X.
Luo
, “
A hybrid ensemble learning model for short-term solar irradiance forecasting using historical observations and sky images
,”
IEEE Trans. Ind. Appl.
59
(
2
),
2041
2049
(
2023
).
17.
T.-P.
Chu
,
J.-H.
Guo
,
Y.-G.
Leu
, and
L.-F.
Chou
, “
Estimation of solar irradiance and solar power based on all-sky images
,”
Sol. Energy
249
,
495
506
(
2023
).
18.
J.
Liu
,
H.
Zang
,
L.
Cheng
,
T.
Ding
,
Z.
Wei
et al, “
A transformer-based multimodal-learning framework using sky images for ultra-short-term solar irradiance forecasting
,”
Appl. Energy
342
,
121160
(
2023
).
19.
Q.
Xie
,
L.
Ma
,
Y.
Liu
,
Q.
Fu
,
Z.
Shen
et al, “
An improved SSA-BiLSTM-based short-term irradiance prediction model via sky images feature extraction
,”
Renewable Energy
219
,
119507
(
2023
).
20.
R. T. Q.
Chen
,
Y.
Rubanova
,
J.
Bettencourt
, and
D. K.
Duvenaud
, “
Neural ordinary differential equations
,” in
Advances in the 31st Neural Information Processing Systems, vol. 31, 2018, pp. 6572–6583. https://papers.nips.cc/paper/2018
21.
S.
Huang
,
Q.
Zhou
,
J.
Shen
,
H.
Zhou
, and
B.
Yong
, “
Multistage spatio-temporal attention network based on node for short-term PV power forecasting
,”
Energy
290
,
130308
(
2024
).
22.
A.
Ngoc-Lan Huynh
,
R. C.
Deo
,
M.
Ali
,
S.
Abdulla
, and
N.
Raj
, “
Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition
,”
Appl. Energy
298
,
117193
(
2021
).
23.
X.
Huang
,
Q.
Li
,
Y.
Tai
,
Z.
Chen
,
J.
Zhang
et al, “
Hybrid deep neural model for hourly solar irradiance forecasting
,”
Renewable Energy
171
,
1041
1060
(
2021
).
24.
T.
Peng
,
C.
Zhang
,
J.
Zhou
, and
M. S.
Nazir
, “
An integrated framework of bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting
,”
Energy
221
,
119887
(
2021
).
25.
M. A.
Colominas
,
G.
Schlotthauer
, and
M. E.
Torres
, “
Improved complete ensemble EMD: A suitable tool for biomedical signal processing
,”
Biomed. Signal Process. Control
14
,
19
29
(
2014
).
26.
C. N.
Long
,
J. M.
Sabburg
,
J.
Calbó
, and
D.
Pagès
, “
Retrieving cloud characteristics from ground-based daytime color all-sky images
,”
J. Atmos. Oceanic Technol.
23
(
5
),
633
652
(
2006
).
27.
Q.
Li
,
W.
Lu
, and
J.
Yang
, “
A hybrid thresholding algorithm for cloud detection on ground-based color images
,”
J. Atmos. Oceanic Technol.
28
(
10
),
1286
1296
(
2011
).
28.
A.
Vaswani
, “
Attention is all you need
,” in
Advances in the 30th Neural Information Processing System, vol. 30, 2017, pp. 5998–6008.
29.
K.
Cho
, “
Learning phrase representations using RNN encoder-decoder for statistical machine translation
,” arXiv:1406.1078 (
2014
).
30.
H. T. C.
Pedro
,
D. P.
Larson
, and
C. F. M.
Coimbra
, “
A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods
,”
J. Renewable Sustainable Energy
11
(
3
),
036102
(
2019
).
31.
A.
Sfetsos
and
A. H.
Coonick
, “
Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques
,”
Sol. Energy
68
(
2
),
169
178
(
2000
).
32.
A.
Gu
,
K.
Goel
, and
C.
, “
Efficiently modeling long sequences with structured state spaces
,” arXiv:2111.00396 (
2021
).
You do not currently have access to this content.