With the growing issue of carbon dioxide emissions alongside energy consumption, hydrogen has garnered significant attention due to its net-zero emissions characteristics. From the industrial production of hydrogen to the exploration and development of hydrogen storage, as well as transportation and underground hydrogen storage (UHS), new integrated technologies and techniques have gradually emerged. However, unresolved technical challenges persist. Analysis of pilot test projects for UHS and hydrogen hybrid storage reveals that some experiences from salt cavern gas storage can be directly applied to hydrogen storage. However, potential technical difficulties and failure risks remain key constraints on the construction of salt cavern hydrogen storage facilities. Currently identified technical challenges include, but are not limited to, hydrogen spillage, microbial consumption, chemical reactions, and other mechanisms leading to underground hydrogen loss as well as integrity issues with wellbore materials (such as metals, cement, and elastomers). This paper summarizes the current technical status of hydrogen storage and emphasizes the need to enhance research and development of experimental equipment and numerical simulation software for underground hydrogen storage. Additionally, it highlights the importance of advancing exploration into porous formation hydrogen storage. This paper provides a theoretical foundation for the development of UHS.

1.
C.
Yang
and
T.
Wang
, “
Advance in deep underground energy storage
,”
Chin. J. Rock Mech. Eng.
41
(
09
),
1729
1759
(
2022
).
2.
Q.
Fan
,
Y.
Ruan
, and
J.
Zhou
, “
Current status and prospect of domestic natural gas purification plants under the target of carbon peaking and carbon neutralization
,”
Chem. Eng. Oil Gas
52
(
01
),
25
31 + 39
(
2023
).
3.
K.
Wang
,
T.
Yang
,
K.
Liang
et al, “
Energy advantages and development suggestions of natural gas under strategy of carbon peaking and carbon neutrality
,”
Energy and Energy Conservation.
28
(
03
),
27
31 (2023
).
4.
H.
Huo
,
D.
Liu
,
T.
Lin
et al, “
Integrity challenges and countermeasures of the offshore CCUS based on CO2-EOR
,”
Pet. Drill. Technol.
51
(
02
),
74
80
(
2023
).
5.
C.
Fetting
, “
The European green deal
,”
ESDN Report
2
(
9
),
53
(
2020
).
6.
J.
Langevin
,
C. B.
Harris
, and
J. L.
Reyna
, “
Assessing the potential to reduce US building CO2 emissions 80% by 2050
,”
Joule
3
(
10
),
2403
2424
(
2019
).
7.
O.
Usman
,
A. A.
Alola
, and
S. A.
Sarkodie
, “
Assessment of the role of renewable energy consumption and trade policy on environmental degradation using innovation accounting: Evidence from the US
,”
Renewable Energy
150
,
266
277
(
2020
).
8.
B.
Ruan
, “
Hydrogen can be used for long-term energy storage
,”
Green Pet. Petrochem.
8
(
02
),
43
(
2023
).
9.
B.
Uliasz-Misiak
,
J.
Lewandowska-Śmierzchalska
,
R.
Matuła
et al, “
Prospects for the implementation of underground hydrogen storage in the EU
,”
Energies
15
(
24
),
9535
(
2022
).
10.
A.
Amid
,
D.
Mignard
, and
M.
Wilkinson
, “
Seasonal storage of hydrogen in a depleted natural gas reservoir
,”
Int. J. Hydrogen Energy
41
(
12
),
5549
5558
(
2016
).
11.
G.
Ding
,
Y.
Wang
,
Q.
WanYan
et al, “
Construction difficulties and research directions of various complex UGSs
,”
Nat. Gas Ind.
43
(
10
),
14
23
(
2023
).
12.
A.
Hassanpouryouzband
,
E.
Joonaki
,
K.
Edlmann
et al, “
Offshore geological storage of hydrogen: Is this our best option to achieve net-zero?
,”
ACS Energy Lett.
6
(
6
),
2181
2186
(
2021
).
13.
C.
Korte
,
T.
Mandt
, and
T.
Bergholz
,
Physics of Hydrogen
(
John Wiley & Sons
,
Ltd
.,
2016
).
14.
R.
Span
,
E. W.
Lemmon
,
R. T.
Jacobsen
et al, “
A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa
,”
J. Phys. Chem. Ref. Data
29
(
6
),
1361
1433
(
2000
).
15.
E. W.
Lemmon
and
R. T.
Jacobsen
, “
Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air
,”
Int. J. Thermophys.
25
(
1
),
21
69
(
2004
).
16.
J. W.
Leachman
,
R. T.
Jacobsen
,
S. G.
Penoncello
et al, “
Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen
,”
J. Phys. Chem. Ref. Data
38
(
3
),
721
748
(
2009
).
17.
D. C.
Muzny
,
L. M.
Huber
, and
R.
Kazakov
, “
A correlation for the viscosity of normal hydrogen obtained from symbolic regression
,”
J. Chem. Eng. Data
58
(
4
),
969
(
2013
).
18.
U.
Setzmann
and
W.
Wagner
, “
A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 100 MPa
,”
J. Phys. Chem. Ref. Data
20
(
6
),
1061
1155
(
1991
).
19.
D.
Zivar
,
S.
Kumar
, and
J.
Foroozesh
, “
Underground hydrogen storage: A comprehensive review
,”
Int. J. Hydrogen Energy
46
,
23436
(
2021
).
20.
R.
Tarkowski
,
B.
Uliasz-Misiak
, and
P.
Tarkowski
, “
Storage of hydrogen, natural gas, and carbon dioxide – Geological and legal conditions
,”
Int. J. Hydrogen Energy
46
,
20010
(
2021
).
21.
A.
Züttel
, “
Materials for hydrogen storage
,”
Mater. Today
6
(
9
),
24
33
(
2003
).
22.
Q.
Wei
,
R.
Zhu
,
Z.
Yang
et al, “
Geological characteristics, formation distribution and resource prospects of natural hydrogen reservoir
,”
Nat. Gas Geosci.
35
(
6
),
1113
1122
(
2024
).
23.
Q.
Meng
,
Z.
Jin
,
D.
Sun
et al, “
Geological background and exploration prospects for the occurrence of high-content hydrogen
,”
Pet. Geol. Exp.
43
(
02
),
208
216
(
2021
).
24.
Z.
Jin
and
L.
Wang
, “
Is there a hydrogen reservoir in nature?
,”
Earth Sci.
47
(
10
),
3858
3859
(
2022
).
25.
T.
Peng
,
J.
Wan
,
W.
Liu
et al, “
Choice of hydrogen energy storage in salt caverns and horizontal cavern construction technology
,”
J. Energy Storage
60
,
106489
(
2023
).
26.
K.
Huang
,
W.
Zhang
,
F.
Wang
et al, “
Development status of underground space energy storage at home and geological survey suggestions
,”
Geol. China
51
(
01
),
105
117
(
2024
).
27.
N.
Dopffel
,
S.
Jansen
, and
J.
Gerritse
, “
Microbial side effects of underground hydrogen storage – Knowledge gaps, risks and opportunities for successful implementation
,”
Int. J. Hydrogen Energy
46
,
8594
(
2021
).
28.
J.
Wang
,
Y.
Yang
,
S.
Cai
et al, “
Pore-scale modelling on hydrogen transport in porous media: Implications for hydrogen storage in saline aquifers
,”
Int. J. Hydrogen Energy
48
,
13922
(
2023
).
29.
A. S.
Lord
,
P. H.
Kobos
, and
D. J.
Borns
, “
Geologic storage of hydrogen: Scaling up to meet city transportation demands
,”
Int. J. Hydrogen Energy
39
(
28
),
15570
15582
(
2014
).
30.
R.
Tarkowski
, “
Underground hydrogen storage: Characteristics and prospects
,”
Renewable Sustainable Energy Rev.
105
,
86
94
(
2019
).
31.
J.
Cihlar
,
D.
Mavins
, and
K.
Van der Leun
,
Picturing the Value of Underground Gas Storage to the European Hydrogen System
(
Guidehouse
,
Chicago, IL
,
2021
), p.
52
.
32.
Y.
Liu
,
X.
Ba
,
N.
Wang
et al, “
The current situation and optimization suggestion of China's gas storage surface engineering technology
,”
Pet. New Energy
33
(
06
),
19
26
(
2021
).
33.
Q.
Zhou
and
J.
Zhang
, “
Review of underground hydrogen storage technology
,”
Pet. New Energy
34
(
04
),
1
6
(
2022
).
34.
China National Petroleum Corp.
,
Specification for Design of Salt Caverns Gas Storage (Q/SY 1416-2011)
(
China Standard Press
,
Beijing
,
2011
) (in Chinese).
35.
D. G.
Caglayan
,
N.
Weber
,
H. U.
Heinrichs
et al, “
Technical potential of salt caverns for hydrogen storage in Europe
,”
Int. J. Hydrogen Energy
45
(
11
),
6793
(
2020
).
36.
A.
SáinzGarcía
,
V.
Rubí
et al, “
Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer
,”
Int. J. Hydrogen Energy
42
(
26
),
16657
16666
(
2017
).
37.
A.
Ozarslan
, “
Large-scale hydrogen energy storage in salt caverns
,”
Int. J. Hydrogen Energy
37
(
19
),
14265
14277
(
2012
).
38.
C. R.
Matos
,
J. F.
Carneiro
, and
P. P.
Silva
, “
Overview of large-scale underground energy storage technologies for integration of renewable energies and criteria for reservoir identification
,”
J. Energy Storage
21
,
241
258
(
2019
).
39.
T.
Wang
,
C.
Yang
,
H.
Ma
et al, “
Safety evaluation of gas storage caverns located close to a tectonic fault
,”
J. Nat. Gas Sci. Eng.
23
,
281
293
(
2015
).
40.
API RP 1114
,
Recommended Practice for the Design of Solution Mined Underground Storage Facilities
(
American Petroleum Institute, NY
,
2007
).
41.
API RP 1114
,
Recommended Practice for the Design of Solution-Mined Underground Storage Facilities
, 2nd ed. (
American Petroleum Institute, NY
,
2013)
.
42.
Canadian Standards Association (CSA)
,
Storage of Hydrocarbons in Underground Formations (Z341 Series-06)
(
CSA
Mississauga, ON, Canada
,
2006
).
43.
R.
Rokahr
,
K.
Staudtmeister
, and
D.
Zander-Schiebenhofer
, “
Development of a new criterion for the determination of the maximum permissible internal pressure for gas storage caverns in rock salt
,”
Technical Report
No.
1
-94,
SMRI
,
1997
.
44.
T.
Wang
,
H.
Ma
,
C.
Yang
,
X.
Shi
, and
J.
Daemen
, “
Gas seepage around bedded salt cavern gas storage
,”
J. Nat. Gas Sci. Eng.
26
,
61
71
(
2015
).
45.
T.
Wang
,
C.
Yang
,
X.
Yan
, and
J.
Daemen
, “
Allowable pillar width for bedded rock salt caverns gas storage
,”
J. Pet. Sci. Eng.
127
,
433
444
(
2015
).
46.
T.
Wang
,
J.
Li
,
G.
Jing
et al, “
Determination of the maximum allowable gas pressure for an underground gas storage salt cavern–A case study of Jintan, China
,”
J. Rock Mech. Geotech. Eng.
11
(
2
),
251
(
2019
).
47.
K. L.
DeVries
, “
Improved modeling increases salt cavern storage working gas
,”
GasTIPS
9
(
1
),
33
36
(
2003
).
48.
M. S.
Bruno
and
M. B.
Dusseault
, “
Geochemical analysis of pressure limits for thin bedded salt caverns,” in Spring 2002 Meeting
Banff, Alberta
(
2002
).
49.
M.
Bai
,
K.
Song
,
B.
Xu
et al, “
Feasibility, limitation and prospect of H2 underground storage
,”
Geol. Rev.
60
(
04
),
748
754
(
2014
).
50.
Q.
Wanyan
,
G.
Ding
,
Y.
Zhao
et al, “
Key technologies for salt-cavern underground gas storage construction and evaluation and their application
,”
Nat. Gas Ind.
38
(
05
),
111
117
(
2018
).
51.
L. E.
Beckingham
and
L.
Winningham
, “
Critical knowledge gaps for understanding water–rock–working phase interactions for compressed energy storage in porous formations
,”
ACS Sustainable Chem. Eng.
8
(
1
),
2
11
(
2020
).
52.
D.
Zhou
, “
Study on reservoir and water-bearing structure reconstruction gas storage in late high water cut stage
,” M.S. dissertation (
Southwest Petroleum University
,
2006
).
53.
M.
Panfilov
, “
Underground and pipeline hydrogen storage
,”
Compend. Hydrogen Energy
2
,
91
115 (
2016
).
54.
N.
Zhang
,
X.
Shi
,
T.
Wang
et al, “
Stability and availability evaluation of underground strategic petroleum reserve (SPR) caverns in bedded rock salt of Jintan, China
,”
Energy
134
,
504
514
(
2017
).
55.
W.
Liu
,
Z.
Zhang
,
J.
Chen
et al, “
Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province
,”
Energy
198
,
117348
(
2020
).
56.
S.
Flesch
,
D.
Pudlo
,
D.
Albrecht
et al, “
Hydrogen underground storage—Petrographic and petrophysical variations in reservoir sandstones from laboratory experiments under simulated reservoir conditions
,”
Int. J. Hydrogen Energy
43
(
45
),
20822
20835
(
2018
).
57.
P. H.
Kobos
,
A. S.
Lord
,
D. J.
Borns
et al, “
A life cycle cost analysis framework for geologic storage of hydrogen: A user's tool
,” Report No. SAND2009-6310,
Sandia National Laboratories (SNL)
,
Albuquerque, NM, and Livermore, CA
,
2011
.
58.
A.
Aftab
,
A.
Hassanpouryouzband
,
H.
Naderi
et al, “
Quantifying onshore salt deposits and their potential for hydrogen energy storage in Australia
,”
J. Energy Storage
65
,
107252
(
2023
).
59.
C.
Hemme
and
W.
Van Berk
, “
Hydrogeochemical modeling to identify potential risks of underground hydrogen storage in depleted gas fields
,”
Appl. Sci.
8
(
11
),
2282
(
2018
).
60.
H.
Yousefi
, “
Design considerations for developing an underground hydrogen storage facility in porous reservoirs
,” Ph.D. thesis (
University of Twente
,
2021
).
61.
E.
Barison
,
F.
Donda
,
B.
Merson
et al, “
An insight into underground hydrogen storage in Italy
,”
Sustainability
15
(
8
),
6886
(
2023
).
62.
C.
Gu
,
L.
Yang
,
W.
Min
et al, “
Monitoring and analyzing the development trend of land subsidence in Changzhou City
,
Jiangsu Province,” Chin. J. Geol. Hazard Control
34
(
02
),
82
91
(
2023
).
63.
The first set of sonar cavity measuring instrument for salt cavern gas storage in China has been successfully developed
,”
J. Salt Sci. Chem. Ind.
51
(
08
),
11
(
2022
).
64.
J.
Wang
,
Z.
Zhang
,
G.
An
et al, “
Application of gas tracer technology to micro-leakage monitoring of salt-cavern underground gas storage
,”
Nat. Gas Ind.
41
(
12
),
156
164
(
2021
).
65.
P.
Fu
,
M.
Luo
,
Y.
Xia
et al, “
Research on status and difficulties of hydrogen underground storage technology
,”
China Well Rock Salt
51
(
06
),
19
23
(
2020
).
66.
T. M.
Hoehler
and
B. B.
Jørgensen
, “
Microbial life under extreme energy limitation
,”
Nat. Rev. Microbiol.
11
(
2
),
83
94
(
2013
).
67.
N.
Eddaoui
,
M.
Panfilov
,
L.
Ganzer
et al, “
Impact of pore clogging by bacteria on underground hydrogen storage
,”
Transp. Porous Media
139
,
89
108
(
2021
).
68.
C.
Magnabosco
,
L. H.
Lin
,
H.
Dong
et al, “
The biomass and biodiversity of the continental subsurface
,”
Nat. Geosci.
11
(
10
),
707
717
(
2018
).
69.
C.
Hemme
and
W.
van Berk
, “
Potential risk of H2S generation and release in salt cavern gas storage
,”
J. Nat. Gas Sci. Eng.
47
,
114
123
(
2017
).
70.
P.
Amigáň
,
M.
Greksak
,
J.
Kozánková
et al, “
Methanogenic bacteria as a key factor involved in changes of town gas stored in an underground reservoir
,”
FEMS Microbiol. Ecol.
6
(
3
),
221
224
(
1990
).
71.
C.
Cui
,
K.
Ren
,
Z.
Wu
et al, “
Feasibility analysis of hydrogen storage in underground aquifers
,”
Chem. Eng. Oil Gas
51
(
05
),
41
50
(
2022
).
72.
N.
Kampman
,
A.
Busch
,
P.
Bertier
et al, “
Observational evidence confirms modelling of the long-term integrity of CO2-reservoir caprocks
,” Nat. Commun. 7, 12268 (
2016
).
73.
Z.
Bo
,
L.
Zeng
,
Y.
Chen
et al, “
Geochemical reactions-induced hydrogen loss during underground hydrogen storage in sandstone reservoirs
,”
Int. J. Hydrogen Energy
46
(
38
),
19998
(
2021
).
74.
D.
Pudlo
,
S.
Flesch
,
D.
Albrecht
et al, “
The impact of hydrogen on potential underground energy reservoirs
,” in
EGU General Assembly Conference Abstracts
(
EGU
,
2018
), p.
8606
.
75.
D. J.
Evans
and
J. M.
West
, “
An appraisal of underground gas storage technologies and incidents, for the development of risk assessment methodology
,”
J. Fuel Cell Technol.
6
(
49
), 97–107 (
2007
).
76.
P. D. V. C.
Nunes
, “
Potencial de Armazenamento Subterrâneo em Cavidades Salinas de Gás Natural em Portugal
,” M.S. dissertation (Instituto Superior Técnico, Tese de Mestrado, Eng. Geologica e de Minas,
2010
).
77.
Y.
Tan
,
L.
Cao
, and
T.
Lin
, “
Feasibility analysis about carbon dioxide as cushion gas for natural gas storage
,”
Oil Gas Storage Transp.
25
,
3
(
2006
).
78.
J.
Kim
,
S.
Han
,
G.
Sung
et al, “
Underground gas storage with CO2 sequestration in a depleted gas field
,” in
International Conference on Offshore Mechanics and Arctic Engineering
(
American Society of Mechanical Engineers
,
2016
), p.
V008T11A005
.
79.
M. R.
Tek
,
Underground Storage of Natural Gas: Theory and Practice
(
Springer
,
1989
).
80.
G.
Wang
,
G.
Pickup
,
K.
Sorbie
et al, “
Scaling analysis of hydrogen flow with carbon dioxide cushion gas in subsurface heterogeneous porous media
,”
Int. J. Hydrogen Energy
47
(
3
),
1752
1764
(
2022
).
81.
L.
Mu
,
X.
Liao
,
Q.
Yu
et al, “
Study on operation strategy of aquifer underground gas storage using CO2 as cushion gas
,” in
Carbon Management Technology Conference
(
2019
).
82.
J.
Kim
,
J.
Choi
, and
K.
Park
, “
Comparison of nitrogen and carbon dioxide as cushion gas for underground gas storage reservoir
,”
Geosystem Eng.
18
(
3
),
163
167
(
2015
).
83.
Y.
Tan
,
C.
Zhan
,
L.
Cao
et al, “
Gas mixing mechanism taking co2 as cushion gas and feasibility of operation control
,”
Nat. Gas Ind.
25
(
12
),
3
(
2005
).
84.
C. O.
Iloejesi
and
L. E.
Beckingham
, “
Assessment of geochemical limitations to utilizing CO2 as a cushion gas in compressed energy storage systems
,”
Environ. Eng. Sci.
38
(
3
),
115
(
2021
).
85.
M.
Bai
,
K.
Song
,
Y.
Sun
et al, “
An overview of hydrogen underground storage technology and prospects in China
,”
J. Pet. Sci. Eng.
124
,
132
136
(
2014
).
86.
L.
Truche
,
G.
Joubert
et al, “
Clay minerals trap hydrogen in the Earth's crust: Evidence from the Cigar Lake uranium deposit, Athabasca
,”
Earth Planet. Sci. Lett.
493
,
186
(
2018
).
87.
A. E.
Yekta
,
J. C.
Manceau
,
S.
Gaboreau
et al, “
Determination of hydrogen–water relative permeability and capillary pressure in sandstone: Application to underground hydrogen injection in sedimentary formations
,”
Transp. Porous Media
122
,
333
(
2018
).
88.
A.
Al-Yaseri
,
D.
Wolff-Boenisch
,
C. A.
Fauziah
et al, “
Hydrogen wettability of clays: Implications for underground hydrogen storage
,”
Int. J. Hydrogen Energy
46
,
34356
(
2021
).
89.
L.
Hashemi
,
W.
Glerum
,
R.
Farajzadeh
et al, “
Contact angle measurement for hydrogen/brine/sandstone system using captive-bubble method relevant for underground hydrogen storage
,”
Adv. Water Resour.
154
,
103964
(
2021
).
90.
M.
Ali
,
N.
Yekeen
,
N.
Pal
et al, “
Influence of pressure, temperature and organic surface concentration on hydrogen wettability of caprock; implications for hydrogen geo-storage
,”
Energy Rep.
7
,
5988
(
2021
).
91.
A. G.
Hanson
,
B.
Kutchko
,
G.
Lackey
et al, “
Subsurface hydrogen and natural gas storage: State of knowledge and research recommendations report
,” Report No. DOE/NETL-2022/3236,
2022
.
92.
Y.
Cheng
, “
Essence and gap analysis for hydrogen embrittlement of pipelines in high-pressure hydrogen environments
,”
Oil Gas Storage Transp.
42
(
01
),
1
8
(
2023
).
93.
M.
Jia
,
R.
Zhang
,
X.
Li
et al, “
Molecular dynamics simulation study on microscopic failure of hydrogen pipeline
,”
J. Saf. Sci. Technol.
19
(
09
),
123
128
(
2023
).
94.
R.
Tepfers
,
Concrete Technology–Porosity is Decisive (Befestigungstechnik, Bewehrungstechnik Und… II. ibidem-Verlag
,
2012
).
95.
S.
Yang
,
Z.
Jun-wen
,
Z.
Bian
et al, “
Pore structure characterization of hardened cement paste by multiple methods
,”
Adv. Mater. Sci. Eng.
2019
,
1
18
.
96.
H.
Patel
,
S.
Salehi
,
R.
Ahmed
et al, “
Review of elastomer seal assemblies in oil & gas wells: Performance evaluation, failure mechanisms, and gaps in industry standards
,”
J. Pet. Sci. Eng.
179
,
1046
1062
(
2019
).
You do not currently have access to this content.