As a renewable energy source, solar energy has become essential to alleviate traditional energy scarcity because of its environmentally friendly characteristics. The intermittence and instability of solar energy bring challenges to energy utilization. Accurate solar radiation prediction models are necessary for the economical and reliable operation of building energy systems. Most existing models predict solar radiation based solely on time-dependent features and neglect the influence of spatial information, resulting in inferior prediction results. A novel hybrid spatiotemporal prediction model based on the graph attention network and bi-directional gated recurrent unit (GAT-BiGRU) is proposed in this paper. The GAT-BiGRU algorithm innovatively adopts the GAT to explore the spatial dependence of solar radiation from the graph topology, while the BiGRU is being applied to capture the temporal dynamic features of solar radiation. Detailed prediction experiments were conducted for the solar radiation of 16 districts in Tianjin. Compared with the state-of-the-art algorithms, the results indicate that the proposed model has a more robust generalization ability and minor prediction errors. Thus, it is expected to provide an effective reference for the actual operation strategy of solar building energy systems.

1.
S. A.
Fatemi
,
A.
Kuh
, and
M.
Fripp
, “
Parametric methods for probabilistic forecasting of solar irradiance
,”
Renewable Energy
129
,
666
676
(
2018
).
2.
B.
Schulz
,
M.
El Ayari
,
S.
Lerch
, and
S.
Baran
, “
Post-processing numerical weather prediction ensembles for probabilistic solar irradiance forecasting
,”
Sol. Energy
220
,
1016
1031
(
2021
).
3.
B. X.
Gao
,
X. Q.
Huang
,
J. S.
Shi
,
Y. H.
Tai
, and
J.
Zhang
, “
Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks
,”
Renewable Energy
162
,
1665
1683
(
2020
).
4.
A. F.
Zambrano
and
L. F.
Giraldo
, “
Solar irradiance forecasting models without on-site training measurements
,”
Renewable Energy
152
,
557
566
(
2020
).
5.
M.
Kakimoto
,
Y.
Endoh
,
H.
Shin
,
R.
Ikeda
, and
H.
Kusaka
, “
Probabilistic solar irradiance forecasting by conditioning joint probability method and its application to electric power trading
,”
IEEE Trans. Sustainable Energy
10
(
2
),
983
993
(
2019
).
6.
R. A.
Verzijlbergh
,
P. W.
Heijnen
,
S. R.
de Roode
,
A.
Los
, and
H. J. J.
Jonker
, “
Improved model output statistics of numerical weather prediction based irradiance forecasts for solar power applications
,”
Sol. Energy
118
,
634
645
(
2015
).
7.
M.
Guermoui
,
F.
Melgani
, and
C.
Danilo
, “
Multi-step ahead forecasting of daily global and direct solar radiation: A review and case study of Ghardaia region
,”
J. Cleaner Prod.
201
,
716
734
(
2018
).
8.
B.
Belmahdi
,
M.
Louzazni
, and
A.
El Bouardi
, “
One month-ahead forecasting of mean daily global solar radiation using time series models
,”
Optik
219
,
165207
(
2020
).
9.
H.
Bouzgou
and
C. A.
Gueymard
, “
Minimum redundancy – Maximum relevance with extreme learning machines for global solar radiation forecasting: Toward an optimized dimensionality reduction for solar time series
,”
Sol. Energy
158
,
595
609
(
2017
).
10.
R. C.
Deo
,
M.
Sahin
,
J. F.
Adamowski
, and
J. C.
Mi
, “
Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: A new approach
,”
Renewable Sustainable Energy Rev.
104
,
235
261
(
2019
).
11.
H.
Acikgoz
, “
A novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecasting
,”
Appl. Energy
305
,
117912
(
2022
).
12.
Z. Y.
Wang
,
C. X.
Tian
,
Q. B.
Zhu
, and
M.
Huang
, “
Hourly solar radiation forecasting using a volterra-least squares support vector machine model combined with signal decomposition
,”
Energies
11
(
1
),
68
(
2018
).
13.
S. L.
Sun
,
S. Y.
Wang
,
G. W.
Zhang
, and
J. L.
Zheng
, “
A decomposition-clustering-ensemble learning approach for solar radiation forecasting
,”
Sol. Energy
163
,
189
199
(
2018
).
14.
R.
Prasad
,
M.
Ali
,
P.
Kwan
, and
H.
Khan
, “
Designing a multi-stage multivariate empirical mode decomposition coupled with ant colony optimization and random forest model to forecast monthly solar radiation
,”
Appl. Energy
236
,
778
792
(
2019
).
15.
R.
Prasad
,
M.
Ali
,
Y.
Xiang
, and
H.
Khan
, “
A double decomposition-based modelling approach to forecast weekly solar radiation
,”
Renewable Energy
152
,
9
22
(
2020
).
16.
J.
Park
,
J.
Moon
,
S.
Jung
, and
E.
Hwang
, “
Multistep-ahead solar radiation forecasting scheme based on the light gradient boosting machine: A case study of Jeju Island
,”
Remote Sens.
12
(
14
),
2271
(
2020
).
17.
E. S. M.
El-Kenawy
,
S.
Mirjalili
,
S. S. M.
Ghoneim
,
M. M.
Eid
,
M.
El-Said
et al, “
Advanced ensemble model for solar radiation forecasting using sine cosine algorithm and Newton's laws
,”
IEEE Access
9
,
115750
115765
(
2021
).
18.
R. J.
Qiu
,
C. W.
Liu
,
N. B.
Cui
,
Y.
Gao
,
L. A.
Li
et al, “
Generalized extreme gradient boosting model for predicting daily global solar radiation for locations without historical data
,”
Energy Convers. Manage.
258
,
115488
(
2022
).
19.
C.
Renno
,
E.
Petito
, and
A.
Gatto
, “
ANN model for predicting the direct normal irradiance and the global radiation for a solar application to a residential building
,”
J. Cleaner Prod.
135
,
1298
1316
(
2016
).
20.
R. C.
Deo
and
M.
Sahin
, “
Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland
,”
Renewable Sustainable Energy Rev.
72
,
828
848
(
2017
).
21.
G.
Notton
,
C.
Voyant
,
A.
Fouilloy
,
J. L.
Duchaud
, and
M. L.
Nivet
, “
Some applications of ANN to solar radiation estimation and forecasting for energy applications
,”
Appl. Sci.
9
(
1
),
209
(
2019
).
22.
S.
Ghimire
,
R. C.
Deo
,
N. J.
Downs
, and
N.
Raj
, “
Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland Australia
,”
J. Cleaner Prod.
216
,
288
310
(
2019
).
23.
C. G.
Ozoegwu
, “
Artificial neural network forecast of monthly mean daily global solar radiation of selected locations based on time series and month number
,”
J. Cleaner Prod.
216
,
1
13
(
2019
).
24.
Y.
Feng
,
D. Z.
Gong
,
Q. W.
Zhang
,
S. Z.
Jiang
,
L.
Zhao
et al, “
Evaluation of temperature-based machine learning and empirical models for predicting daily global solar radiation
,”
Energy Convers. Manage.
198
,
111780
(
2019
).
25.
B. K.
Puah
,
L. W.
Chong
,
Y. W.
Wong
,
K. M.
Begam
,
N.
Khan
et al, “
A regression unsupervised incremental learning algorithm for solar irradiance prediction
,”
Renewable Energy
164
,
908
925
(
2021
).
26.
M. C.
Sorkun
,
Ö.
Incel
, and
C.
Paoli
, “
Time series forecasting on multivariate solar radiation data using deep learning (LSTM)
,”
Turk. J. Electr. Eng. Comput. Sci.
28
(
1
),
211
223
(
2020
).
27.
S.
Ghimire
,
R. C.
Deo
,
N.
Raj
, and
J. C.
Mi
, “
Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms
,”
Appl. Energy
253
,
113541
(
2019
).
28.
D.
Cannizzaro
,
A.
Aliberti
,
L.
Bottaccioli
,
E.
Macii
,
A.
Acquaviva
et al, “
Solar radiation forecasting based on convolutional neural network and ensemble learning
,”
Expert Syst. Appl.
181
,
115167
(
2021
).
29.
X.
Huang
,
Q.
Li
,
Y.
Tai
,
Z.
Chen
,
J.
Zhang
et al, “
Hybrid deep neural model for hourly solar irradiance forecasting
,”
Renewable Energy
171
,
1041
1060
(
2021
).
30.
M.
Aslam
,
J. M.
Lee
,
H. S.
Kim
,
S. J.
Lee
, and
S.
Hong
, “
Deep learning models for long-term solar radiation forecasting considering microgrid installation: A comparative study
,”
Energies
13
(
1
),
147
(
2019
).
31.
S.
Boubaker
,
M.
Benghanem
,
A.
Mellit
,
A.
Lefza
,
O.
Kahouli
et al, “
Deep neural networks for predicting solar radiation at Hail Region, Saudi Arabia
,”
IEEE Access
9
,
36719
36729
(
2021
).
32.
T.
Peng
,
C.
Zhang
,
J. Z.
Zhou
, and
M. S.
Nazir
, “
An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting
,”
Energy
221
,
119887
(
2021
).
33.
C. S.
Lai
,
C. K.
Zhong
,
K. D.
Pan
,
W. W. Y.
Ng
, and
L. L.
Lai
, “
A deep learning based hybrid method for hourly solar radiation forecasting
,”
Expert Syst. Appl.
177
,
114941
(
2021
).
34.
H.
Zang
,
Y.
Zhang
,
L.
Cheng
,
T.
Ding
,
Z.
Wei
et al, “
Multi-site solar irradiance forecasting based on adaptive spatiotemporal graph convolutional network
,”
Expert Syst. Appl.
236
,
121313
(
2024
).
35.
Y. J.
Yu
,
Z. J.
Cheng
,
B.
Xiong
, and
Q.
Li
, “
Multi-site solar irradiance prediction based on hybrid spatiotemporal graph neural network
,”
J. Renewable Sustainable Energy
16
(
4
),
043701
(
2024
).
You do not currently have access to this content.