The peer-to-peer energy sharing (PPES) program is considered an effective measure to improve the resilience of microgrids. This study quantifies this impact from a long-period perspective by calculating and comparing buildings' probability of surviving outage (PSO) with given length of outage sustained hour in renewable microgrid under different PPES scenarios. The results indicate that the PSO can effectively represent the influence of PPES on enhancing microgrid resilience across various load levels. Specifically, buildings with load patterns more consistent with solar power output pattern have a higher probability to survive longer power outages. Meanwhile, PPES is more effective than load curtailment in improving a building's resilience, this is because only if the load is curtailed by almost 50% can the resilience be improved to the level when shared energy was used. Simultaneously, load curtailment reduces the Renewable Energy Utilization Ratio (REUR) of buildings, whereas introducing PPES maximizes the REUR. Finally, the combination of 20% load curtailment + PPES can almost generate the same resilience improving effect for the microgrid as that of each building alone installing photovoltaic + battery energy storage, and if higher amount of load can be curtailed, a greater resilience improvement can be achieved. Therefore, for the sake of adaptability as well as resource conservation and sustainability, we recommended policymakers and other stakeholders put a higher priority on the implementation of PPES + moderate amount of load curtailment in improving the resilience of microgrids.

1.
S. B.
Sepúlveda-Mora
and
S.
Hegedus
, “
Resilience analysis of renewable microgrids for commercial buildings with different usage patterns and weather conditions
,”
Renewable Energy
192
,
731
744
(
2022
).
2.
A.
Heydari
,
D. A.
Garcia
,
F.
Keynia
,
F.
Bisegna
, and
L.
De Santoli
, “
Renewable energies generation and carbon dioxide emission forecasting in microgrids and national grids using GRNN-GWO methodology
,”
Energy Procedia
159
,
154
159
(
2019
).
3.
C.
Kennedy
,
I. D.
Stewart
,
M. I.
Westphal
,
A.
Facchini
, and
R.
Mele
, “
Keeping global climate change within 1.5 C through net negative electric cities
,”
Curr. Opin. Environ. Sustainability
30
,
18
25
(
2018
).
4.
R.
Nazir
,
H. D.
Laksono
,
E. P.
Waldi
,
E.
Ekaputra
, and
P.
Coveria
, “
Renewable energy sources optimization: A micro-grid model design
,”
Energy Procedia
52
,
316
327
(
2014
).
5.
A. K.
Sahoo
,
K. P.
Abhitharan
,
A.
Kalaivani
, and
T. J.
Karthik
, “
Feasibility study of microgrid installation in an educational institution with grid uncertainty
,”
Procedia Comput. Sci.
70
,
550
557
(
2015
).
6.
J.
Lu
,
M.
Zeng
,
X.
Zeng
,
Z.
Fang
, and
J.
Yuan
, “
Analysis of ice-covering characteristics of China Hunan power grid
,”
IEEE Trans. Ind. Appl.
51
(
3
),
1997
2002
(
2015
).
7.
A. G.
Selga
,
D. S.
Muñoz
, and
J. L.
Dominguez-Garcia
, “
Analysis and enhancement of Barcelona's power grid resilience
,”
Energy Rep.
8
,
1160
1167
(
2022
).
8.
S. E.
Collier
, “
A modern intelligent grid mean new motivations, models and methods
,” in
IEEE Rural Electric Power Conference (REPC)
(
IEEE
,
2017
), pp.
66
70
.
9.
A.
Kwasinski
,
F.
Andrade
,
M. J.
Castro-Sitiriche
, and
E.
O'Neill-Carrillo
, “
Hurricane Maria effects on Puerto Rico electric power infrastructure
,”
IEEE Power Energy Technol. Syst. J.
6
(
1
),
85
94
(
2019
).
10.
D.
Chen
,
Z.
Cai
,
H.
Wu
, and
C.
Guo
, “
Review of distribution network's resilience based on typhoon disaster
,”
Energy Rep.
8
,
876
888
(
2022
).
11.
D.
Wu
,
X.
Zheng
,
Y.
Xu
,
D.
Olsen
,
B.
Xia
et al, “
An open-source extendable model and corrective measure assessment of the 2021 Texas power outage
,”
Adv. Appl. Energy
4
,
100056
(
2021
).
12.
S. M. S.
Ullah
,
K.
Sheda
,
F.
Ferdowsi
, and
T.
Chambers
, “
Cost-aware strategies for enhancing energy resilience in microgrids via stationary and mobile resources
,”
J. Saf. Sci. Resil.
(published online) (
2024
).
13.
D. K.
Saini
and
M.
Sharma
, “
Techno-economic hardening strategies to enhance distribution system resilience against earthquake
,”
Reliab. Eng. Syst. Safety
213
,
107682
(
2021
).
14.
A.
Mar
,
P.
Pereira
, and
J.
Martins
, “
Energy community flexibility solutions to improve users' wellbeing
,”
Energies
14
(
12
),
3403
(
2021
).
15.
AMERESCO
, “
Why choose a clean energy microgrid? And clean energy microgrids for hospitals
” in
The Rise of Clean Energy Microgrids. Why Microgrids Make Sense for Hospitals, Higher Education, Military & Government, and Businesses
(
E-Publishing, Inc
.,
2017
), pp.
1
6
.
16.
K.
Pang
,
J.
Zhou
,
S.
Tsianikas
,
D. W.
Coit
, and
Y.
Ma
, “
Long-term microgrid expansion planning with resilience and environmental benefits using deep reinforcement learning
,”
Renewable Sustainable Energy Rev.
191
,
114068
(
2024
).
17.
M. M.
Arsoon
and
S. M.
Moghaddas-Tafreshi
, “
Peer-to-peer energy bartering for the resilience response enhancement of networked microgrids
,”
Appl. Energy
261
,
114413
(
2020
).
18.
H.
Gan
,
S.
Li
,
F.
Yang
,
X.
Gao
, and
X.
Ma
, “
Resilience promotion strategy of distribution network considering demand response and distributed generation uncertainty
,” in
Asia Conference on Power and Electrical Engineering (ACPEE)
(
IEEE
,
2021
), pp.
1278
1285
.
19.
H.
Li
and
S.
Wang
, “
Coordinated multi-time scale optimal control of building energy systems for demand response considering forecast uncertainties
,” Available at SSRN 3878687,
2021
.
20.
J. Y.
Yang
,
D.
Li
,
C.
Liu
et al, “
A new power system power planning method based on demand response and energy storage capacity
,”
Proc. SPIE
12748
,
1274833
(
2023
).
21.
L. P.
Klein
,
A.
Krivoglazov
,
L.
Matos
,
J.
Landeck
, and
M.
De Azevedo
, “
A novel peer-to-peer energy sharing business model for the Portuguese energy market
,”
Energies
13
(
1
),
125
(
2019
).
22.
S. C.
Cui
,
Y. W.
Wang
,
Y.
Shi
, and
J. W.
Xiao
, “
A new and fair peer-to-peer energy sharing framework for energy buildings
,”
IEEE Trans. Smart Grid
11
(
5
),
3817
3826
(
2020
).
23.
M. W.
Tian
and
P.
Talebizadehsardari
, “
Energy cost and efficiency analysis of building resilience against power outage by shared parking station for electric vehicles and demand response program
,”
Energy
215
,
119058
(
2021
).
24.
A.
Das
,
S. D.
Peu
,
M. A. M.
Akanda
, and
A. R. M. T.
Islam
, “
Peer-to-peer energy trading pricing mechanisms: Towards a comprehensive analysis of energy and network service pricing (NSP) mechanisms to get sustainable enviro-economical energy sector
,”
Energies
16
(
5
),
2198
(
2023
).
25.
W.
Tushar
,
C.
Yuen
,
T. K.
Saha
,
T.
Morstyn
,
A. C.
Chapman
et al, “
Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges
,”
Appl. Energy
282
,
116131
(
2021
).
26.
K.
Kusakana
, “
Modeling an optimal peer-to-peer energy sharing between prosumers in a south african context
,” in
IEEE Milan PowerTech
(
IEEE
,
2019
), pp.
1
6
.
27.
S.
Cui
and
J. W.
Xiao
, “
Game-based peer-to-peer energy sharing management for a community of energy buildings
,”
Int. J. Electr. Power Energy Syst.
123
,
106204
(
2020
).
28.
S.
Cui
,
Y. W.
Wang
,
Y.
Shi
, and
J. W.
Xiao
, “
An efficient peer-to-peer energy-sharing framework for numerous community prosumers
,”
IEEE Trans. Ind. Inf.
16
(
12
),
7402
7412
(
2020
).
29.
F. R.
Badal
,
P.
Das
,
S. K.
Sarker
, and
S. K.
Das
, “
A survey on control issues in renewable energy integration and microgrid
,”
Prot. Control Mod. Power Syst.
4
(
1
),
8
(
2019
).
30.
A.
Hussain
,
V. H.
Bui
, and
H. M.
Kim
, “
Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience
,”
Appl. Energy
240
,
56
72
(
2019
).
31.
V.
Widiputra
,
S.
Oh
, and
J.
Jung
, “
Optimal microgrid formation to improve the resilience of power system withstanding the storm
,” in
IEEE R10 Humanitarian Technology Conference (R10-HTC)(47129)
(
IEEE
,
2019
), pp.
228
233
.
32.
P.
Balducci
,
K.
Mongird
,
D.
Wu
,
D.
Wang
,
V.
Fotedar
et al, “
An evaluation of the economic and resilience benefits of a microgrid in Northampton, Massachusetts
,”
Energies
13
(
18
),
4802
(
2020
).
33.
P.
Ghosh
and
M.
De
, “
Impact of microgrid towards power system resilience improvement during extreme events
,” in
International Conference on Computational Performance Evaluation (ComPE)
(
IEEE
,
2021
), pp.
767
772
.
34.
S.
Cai
,
Y.
Xie
,
Q.
Wu
,
M.
Zhang
,
X.
Xi
et al, “
Distributionally robust microgrid formation approach for service restoration under random contingency
,”
IEEE Trans. Smart Grid
12
(
6
),
4926
4937
(
2021
).
35.
Y.
Shen
,
C.
Gu
,
Z.
Ma
,
X.
Yang
, and
P.
Zhao
, “
A two-stage resilience enhancement for distribution systems under hurricane attacks
,”
IEEE Syst. J.
15
(
1
),
653
661
(
2021
).
36.
H.
Masrur
,
A.
Sharifi
,
M. R.
Islam
,
M. A.
Hossain
, and
T.
Senjyu
, “
Optimal and economic operation of microgrids to leverage resilience benefits during grid outages
,”
Int. J. Electr. Power Energy Syst.
132
,
107137
(
2021
).
37.
E.
Galvan
,
P.
Mandal
, and
Y.
Sang
, “
Networked microgrids with roof-top solar PV and battery energy storage to improve distribution grids resilience to natural disasters
,”
Int. J. Electr. Power Energy Syst.
123
,
106239
(
2020
).
38.
T. M.
Azerefegn
,
R.
Bhandari
, and
A. V.
Ramayya
, “
Techno-economic analysis of grid-integrated PV/wind systems for electricity reliability enhancement in Ethiopian industrial park
,”
Sustainable Cities Soc.
53
,
101915
(
2020
).
39.
A.
Lagrange
,
M.
de Simon-Martín
,
A.
Gonzalez-Martínez
,
S.
Bracco
, and
E. R.
Asensio
, “
Sustainable microgrids with energy storage as a means to increase power resilience in critical facilities: An application to a hospital
,”
Int. J. Electr. Power Energy Syst.
119
,
105865
(
2020
).
40.
J.
Nelson
,
N. G.
Johnson
,
K.
Fahy
, and
T. A.
Hansen
, “
Statistical development of microgrid resilience during islanding operations
,”
Appl. Energy
279
,
115724
(
2020
).
41.
M.
Alruwaili
and
L.
Cipcigan
, “
Optimal annual operational cost of a hybrid renewable-based microgrid to increase the power resilience of a critical facility
,”
Energies
15
(
21
),
8040
(
2022
).
42.
X.
Li
,
C.
Li
,
X.
Liu
,
G.
Chen
, and
Z. Y.
Dong
, “
Two-stage community energy trading under end-edge-cloud orchestration
,”
IEEE Internet Things J.
10
(
3
),
1961
1972
(
2023
).
43.
Y.
Zhou
and
P. D.
Lund
, “
Peer-to-peer energy sharing and trading of renewable energy in smart communities- trading pricing models, decision-making and agent-based collaboration
,”
Renewable Energy
207
,
177
(
2023
).
44.
A. M.
Saatloo
,
M. A.
Mirzaei
, and
B.
Mohammadi-Ivatloo
, “
A robust decentralized peer-to-peer energy trading in community of flexible microgrids
,”
IEEE Syst. J.
17
(
1
),
640
651
(
2023
).
45.
M.
Shi
,
H.
Wang
,
P.
Xie
,
C.
Lyu
,
L.
Jian
et al, “
Distributed energy scheduling for integrated energy system clusters with peer-to-peer energy transaction
,”
IEEE Trans. Smart Grid
14
(
1
),
142
156
(
2023
).
46.
I.
Hadachi
and
S.
Albayrak
, “
A survey on simulation of power systems resilience under extreme weather events
,” in
IEEE Milan PowerTech
(
IEEE
,
2019
), pp.
1
6
.
47.
Y.
Zhang
,
R.
Kang
,
R.
Li
, and
C.
Yang
, “
A comprehensive analysis method for system resilience considering plasticity
,” in
International Conference on Industrial Engineering, Management Science and Application (ICIMSA
) (
IEEE
,
2016
), pp.
1
4
.
48.
A.
Ryu
,
H.
Ishii
, and
Y.
Hayashi
, “
Multi-objective optimal operation planning for battery energy storage in a grid-connected micro-grid
,”
IJEETC
9
(
3
),
163
170
(
2020
).
49.
M.
Panteli
,
P.
Mancarella
,
D. N.
Trakas
,
E.
Kyriakides
, and
N. D.
Hatziargyriou
, “
Metrics and quantification of operational and infrastructure resilience in power systems
,”
IEEE Trans. Power Syst.
32
(
6
),
4732
4742
(
2017
).
50.
Y.
Wang
,
Y.
Yang
, and
Q.
Xu
, “
Resilience assessment of the integrated gas and power systems under extreme weather
,”
Energy Rep.
9
,
160
167
(
2023
).
51.
M.
Bessani
,
J. A. D.
Massignan
,
R. Z.
Fanucchi
,
M. H.
Camillo
,
J. B.
London
et al, “
Probabilistic assessment of power distribution systems resilience under extreme weather
,”
IEEE Syst. J.
13
(
2
),
1747
1756
(
2019
).
52.
Y.
Wang
,
Y.
Cai
,
Y.
Xie
,
L.
Chen
, and
P.
Zhang
, “
An integrated approach for evaluating dynamics of urban eco-resilience in urban agglomerations of China
,”
Ecol. Indic.
146
,
109859
(
2023
).
53.
Y.
Zhou
, “
Climate change adaptation with energy resilience in energy districts—A state-of-the-art review
,”
Energy Build.
279
,
112649
(
2023
).
54.
A.
Bie
,
Y.
Lin
,
G.
Li
, and
F.
Li
, “
Battling the extreme: A study on the power system resilience
,”
Proc. IEEE
105
(
7
),
1253
1266
(
2017
).
55.
T.
Simpkins
,
K.
Anderson
,
D.
Cutler
, and
D.
Olis
, “
Optimal sizing of a solar-plus-storage system for utility bill savings and resiliency benefits
,” in
IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)
(
IEEE
,
2016
), pp.
1
6
.
56.
N. D.
Laws
,
K.
Anderson
,
N. A.
DiOrio
,
X.
Li
, and
J.
McLaren
, “
Impacts of valuing resilience on cost-optimal PV and storage systems for commercial buildings
,”
Renewable Energy
127
,
896
909
(
2018
).
57.
E.
Rosales-Asensio
,
M.
de Simon-Martín
,
D.
Borge-Diez
,
J. J.
Blanes-Peiro
, and
A.
Colmenar-Santos
, “
Microgrids with energy storage systems as a means to increase power resilience: An application to office buildings
,”
Energy
172
,
1005
1015
(
2019
).
58.
K. V. S. M.
Babu
,
D.
Dwivedi
,
P.
Chakraborty
,
P. K.
Yemula
, and
M.
Pal
, “
A resilient power distribution system using P2P energy sharing
,” in
2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET)
,
London, United Kingdom
,
2023
.
59.
S.
Tsianikas
,
N.
Yousefi
,
J.
Zhou
,
M. D.
Rodgers
, and
D.
Coit
, “
NA storage expansion planning framework using reinforcement learning and simulation-based optimization
,”
Appl. Energy
290
,
116778
(
2021
).
60.
U. L.
Homer
,
Grid by HOMER Grid 1.8 HOMER's Calc
,
2023
.
61.
National Renewable Energy Laboratory
,
NSRDB: National Solar Radiation Database
,
2008
, see https://nsrdb.nrel.gov (last accessed June 8, 2023).
62.
National Renewable Energy Laboratory
,
Wind Resource Data, Tools, and Maps
,
Geospatial Data Sci
.,
2021
, see https://www.nrel.gov/gis/wind.html (last accessed June 8, 2023).
63.
National Renewable Energy Laboratory
,
Commercial and Residential Hourly Load Profiles for All TMY3 Locations in the United States [data Set]
,
2014
, see http://data.openei.org/submissions/153 (last accessed June 8, 2023).
64.
C.
Zhang
,
Y.
Rezgui
,
Z.
Luo
,
B.
Jiang
, and
T.
Zhao
, “
Simultaneous community energy supply-demand optimization by microgrid operation scheduling optimization and occupant-oriented flexible energy-use regulation
,”
Appl. Energy
373
,
123922
(
2024
).
You do not currently have access to this content.