We establish a representative volume element (RVE) model and investigate the electromechanical coupling between the electric and mechanical fields in d31 piezoelectric macro-fiber composite (MFC) through numerical simulation methods. The average equivalent performance parameters characterization of d31 MFC is formulated by following the finite element homogenization methodology previously proposed for shear d15 MFC. When varying the direction of RVE constraints, the distribution of various physical fields (with a focus on stress, strain, electric displacement, electric field intensity, potential, and polarization field) is significantly affected. When the RVE is subjected to unidirectional constraints only, the distribution of each physical field is relatively uniform. However, when it is simultaneously subjected to constraints from two directions, there are significant differences in the variations of each physical field, exhibiting a non-uniform distribution. Based on the constitutive relationship of d31 MFC provided in the reference framework, the equivalent performance parameters of d31 MFC are evaluated in the RVE when the volume fraction of piezoceramic ranges from 20% to 80%. Specifically, the effects of interdigital electrodes and flexible substrates on the effective elastic modulus, piezoelectric coefficient, and dielectric coefficient are analyzed. These research works provide theoretical support for the preparation of d31 MFC with different performance parameters.

1.
M. J.
Schulz
,
M. J.
Sundaresan
,
A.
Ghoshal
, and
P. F.
Pai
, “
Active fiber composites for structural health monitoring
,”
Proc. SPIE
3992
,
13
24
(
2000
).
2.
G.
Park
,
E.
Ruggiero
, and
D. J.
Inman
, “
Dynamic testing of inflatable structures using smart materials
,”
Smart Mater. Struct.
11
,
147
155
(
2002
).
3.
S.
Johannes
,
M.
Thomas
, and
K.
Andreas
, “
Control of a flexible beam actuated by macro-fiber composite patches: II. Hysteresis and creep compensation, experimental results
,”
Smart Mater. Struct.
20
(
1
),
015016
(
2011
).
4.
R. B.
Williams
,
B. W.
Grimsley
,
D. J.
Inman
, and
W. K.
Wilkie
, “
Manufacturing and mechanics-based characterization of macro fiber composite actuators
,” in
Proceedings of IMECE02 2002 ASME International Mechanical Engineering Congress & Exposition
(
ASME
,
2002
), pp.
79
89
.
5.
A. K.
Jha
and
D. J.
Inman
, “
Vibration control of a gossamer toroidal structure using smart material actuators and sensors
,”
Proc. SPIE
5056
,
475
486
(
2003
).
6.
K.
Adachi
,
G.
Park
, and
D. J.
Inman
, “
Passive damping augmentation using macro-fiber composite actuators
,”
Am. Soc. Mech. Eng.
67
,
71
78
(
2002
).
7.
Y.
Okabe
and
F.
Nakayama
, “
Damage detection in CFRP laminates by ultrasonic wave propagation using MFC actuator and FBG sensor
,”
Trans. Space Technol. Jpn.
7
(
26
),
7
12
(
2009
).
8.
C.
Yang
,
N.
Xiao
,
S.
Yang
et al, “
Micro response mechanism of mini MFC sensor performance to temperature and its applicability to actual wastewater
,”
Chem. Eng. Sci.
263
,
118124
(
2022
).
9.
J.
Jeon
,
J. W.
Sohn
, and
S. B.
Choi
, “
Comparison of dynamic signal of MFC and PVDF sensor: Experimental investigation
,”
Adv. Mater. Res.
317–319
,
1098
1101
(
2011
).
10.
J. D.
Park
and
Z.
Ren
, “
High efficiency energy harvesting from microbial fuel cells using a synchronous boost converter
,”
J. Power Sources
208
(
6
),
322
327
(
2012
).
11.
J. J.
Liu
,
H.
Zuo
,
W.
Xia
et al, “
Wind energy harvesting using piezoelectric macro fiber composites based on flutter mode
,”
Microelectron. Eng.
231
,
111333
(
2020
).
12.
J. J.
Liu
,
Y. J.
Chen
,
W.
Xia
et al, “
An innovative V-shaped piezoelectric energy harvester for wind energy based on the fully fluid-solid-electric coupling
,”
J. Renewable Sustainable Energy
13
(
6
),
063304
(
2021
).
13.
A.
Pandey
and
A.
Arockiarajan
, “
Actuation performance of macro-fiber composite (MFC): Modeling and experimental studies
,”
Sens. Actuators, A
248
,
114
129
(
2016
).
14.
D.
Tan
,
P.
Yavarow
, and
A.
Erturk
, “
Nonlinear elastodynamics of piezoelectric macro-fiber composites with interdigitated electrodes for resonant actuation
,”
Compos. Struct.
187
(
3
),
137
143
(
2018
).
15.
S.
Gohari
,
S.
Sharifi
,
R.
Abadi
et al, “
A quadratic piezoelectric multi-layer shell element for FE analysis of smart laminated composite plates induced by MFC actuators
,”
Smart Mater. Struct.
27
,
095004
(
2018
).
16.
X.
Kan
,
Y.
Lu
,
F.
Zhang
et al, “
Approximate symplectic approach for mistuned bladed disk dynamic problem
,”
Mech. Syst. Sig. Process.
208
,
110960
(
2024
).
17.
R. B.
Williams
, “
Nonlinear mechanical and actuation characterization of piezoceramic fiber composites
,” Ph.D. dissertation (
Virginia Polytechnic Institute and State University
, 2004).
18.
A.
Deraemaeker
,
H.
Nasser
,
A.
Benjeddou
, and
A.
Preumont
, “
Mixing rules for the piezoelectric properties of macro fiber composites
,”
J. Intell. Mater. Syst. Struct.
20
(
12
),
1475
1482
(
2009
).
19.
F.
Biscani
,
H.
Nasser
,
S.
Belouettar
, and
E.
Carrera
, “
Equivalent electro-elastic properties of macro fiber composite (MFC) transducers using asymptotic expansion approach
,”
Composites, Part B
42
(
3
),
444
455
(
2011
).
20.
X. P.
Tian
,
Q.
Deng
,
J.
Sladek
et al, “
Modeling the flexoelectric effect in semiconductors via a second-order collocation MFEM
,”
Int. J. Mech. Sci.
264
,
108837
(
2024
).
21.
S.
Sreenivasa Prasath
and
A.
Arockiarajan
, “
Effective electromechanical response of macro-fiber composite (MFC): Analytical and numerical models
,”
Int. J. Mech. Sci.
77
,
98
106
(
2013
).
22.
K.
Singh
,
J.
Adhikari
, and
J.
Roscow
, “
Prediction of the electromechanical properties of a piezoelectric composite material through the artificial neural network
,”
Mater. Today Commun.
38
,
108288
(
2024
).
23.
K.
Singh
,
K. B.
Shingare
,
T.
Mukhopadhyay
, and
S.
Naskar
, “
Multilevel fully integrated electromechanical property modulation of functionally graded graphene-reinforced piezoelectric actuators: Coupled effect of poling orientation
,”
Adv. Theory Simul.
6
,
2200756
(
2023
).
24.
K.
Singh
,
S.
Sharma
,
R.
Kumar
, and
M.
Talha
, “
Vibration control of cantilever beam using poling tuned piezoelectric actuator
,”
Mech. Based Des. Struct. Mach.
51
(
4
),
2217
2240
(
2023
).
25.
M. A.
Trindade
and
A.
Benjeddou
, “
Finite element characterisation of multilayer d31 piezoelectric macro-fibre composites
,”
Compos. Struct.
151
(
9
),
47
57
(
2016
).
26.
M. A.
Trindade
and
A.
Benjeddou
, “
Finite element homogenization technique for the characterization of d15 shear piezoelectric macro-fibre composites
,”
Smart Mater. Struct.
20
(
7
),
075012
(
2011
).
27.
A.
Deraemaeker
and
H.
Nasser
, “
Numerical evaluation of the equivalent properties of macro fiber composite (MFC) transducers using periodic homogenization
,”
Int. J. Solids Struct.
47
(
24
),
3272
3285
(
2010
).
28.
Q.
Deng
,
M.
Kammoun
,
A.
Erturk
et al, “
Nanoscale flexoelectric energy harvesting
,”
Int. J. Solids Struct.
51
(
18
),
3218
3225
(
2014
).
29.
S. S.
Prasath
and
A.
Arockiarajan
, “
Analytical, numerical and experimental predictions of the effective electromechanical properties of macro-fiber composite (MFC)
,”
Sens. Actuators, A
214
,
31
44
(
2014
).
You do not currently have access to this content.