The performance state of lithium-ion batteries directly impacts the stability of energy storage system operations. With prolonged use, lithium-ion batteries undergo complex electrochemical changes, leading to capacity degradation and reduced performance. To accurately estimate the state of health (SOH) for lithium-ion batteries in energy storage application scenarios, this study conducts aging tests on lithium-ion batteries under different charging voltages and develops an online model-based SOH estimation method. First, excitation response analysis and an extended Kalman filter algorithm are used to identify battery parameters of a simplified electrochemical model both offline and online. Then, by analyzing parameter change laws during battery aging and the correlation between the parameters and battery capacity, aging mechanisms are obtained and battery health features are further extracted. Finally, an SOH estimation model based on a support vector regression algorithm is developed with both offline and online parameter sets.

1.
X. X.
Chen
,
Y. G.
Hu
,
S.
Li
,
Y. X.
Wang
,
D. J.
Li
,
C. J.
Luo
et al, “
State of health (SoH) estimation and degradation modes analysis of pouch NMC532/graphite Li-ion battery
,”
J. Power Sources
498
,
229884
(
2021
).
2.
M.
Hirooka
,
T.
Okumura
, and
K.
Ariyoshi
, “
Effects of lithium over-stoichiometry in Li1+xCoO2-δ and Li1+xCo0.95Ni0.05O2-δ on high-voltage float durability and cyclability
,”
J. Electrochem. Soc.
170
(
10
),
100506
(
2023
).
3.
D. R.
Kannan
and
M. H.
Weatherspoon
, “
The effect of pulse charging on commercial lithium cobalt oxide (LCO) battery characteristics
,”
Int. J. Electrochem. Sci.
16
(
4
),
210453
(
2021
).
4.
H.
Chen
,
A.
Chahbaz
,
S.
Yang
,
W.
Zhang
,
D. U.
Sauer
, and
W.
Li
, “
Thermodynamic and kinetic degradation of LTO batteries: Impact of different SOC intervals and discharge voltages in electric train applications
,”
Etransportation
21
,
100340
(
2024
).
5.
P.
Keil
and
A.
Jossen
, “
Charging protocols for lithium-ion batteries and their impact on cycle life-An experimental study with different 18650 high-power cells
,”
J. Energy Storage
6
,
125
141
(
2016
).
6.
Y.
Gao
,
J. C.
Jiang
,
C. P.
Zhang
,
W. G.
Zhang
,
Z. Y.
Ma
, and
Y.
Jiang
, “
Lithium-ion battery aging mechanisms and life model under different charging stresses
,”
J. Power Sources
356
,
103
114
(
2017
).
7.
C. H.
Liu
,
Y.
Gao
, and
L.
Liu
, “
Toward safe and rapid battery charging: Design optimal fast charging strategies thorough a physics-based model considering lithium plating
,”
Int. J. Energy Res.
45
(
2
),
2303
2320
(
2021
).
8.
J. W.
Shen
,
W. S.
Ma
,
X.
Shu
,
S. Q.
Shen
,
Z.
Chen
, and
Y. G.
Liu
, “
Accurate state of health estimation for lithium-ion batteries under random charging scenarios
,”
Energy
279
,
128092
(
2023
).
9.
P.
Coulibaly
,
F.
Anctil
, and
B.
Bobée
, “
Hydrological forecasting with artificial neural networks: The state of the art
,”
Can. J. Civ. Eng.
26
,
293
304
(
1999
).
10.
B.
Bai
,
P.
Wang
,
C.
Hu
, and
M.
Pecht
, “
A generic model-free approach for lithium-ion battery health management
,”
Appl. Energy
135
,
247
260
(
2014
).
11.
V.
Cherkassky
, “
The nature of statistical learning theory∼
,”
IEEE Trans. Neural Networks
8
(
6
),
1564
(
1997
).
12.
J. H.
Meng
,
L.
Cai
,
G. Z.
Luo
,
D. I.
Stroe
, and
R.
Teodorescu
, “
Lithium-ion battery state of health estimation with short-term current pulse test and support vector machine
,”
Microelectron. Reliab.
88–90
,
1216
1220
(
2018
).
13.
C. L.
Wu
,
J. C.
Fu
,
X. R.
Huang
,
X. F.
Xu
, and
J. H.
Meng
, “
Lithium-ion battery health state prediction based on VMD and DBO-SVR
,”
Energies
16
(
10
),
3993
(
2023
).
14.
J.
Li
,
K.
Adewuyi
,
N.
Lotfi
,
R. G.
Landers
, and
J.
Park
, “
A single particle model with chemical/mechanical degradation physics for lithium-ion battery State of Health (SOH) estimation
,”
Appl. Energy
212
,
1178
1190
(
2018
).
15.
Y.
Chang
,
H.
Fang
, and
Y.
Zhang
, “
A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery
,”
Appl. Energy
206
,
1564
1578
(
2017
).
16.
J.
Liu
,
W.
Wang
,
F.
Ma
,
Y. B.
Yang
, and
C. S.
Yang
, “
A data-model-fusion prognostic framework for dynamic system state fore-casting
,”
Eng. Appl. Artif. Intell.
25
(
4
),
814
823
(
2012
).
17.
X.
Shu
,
G.
Li
,
J. W.
Shen
,
Z. Z.
Lei
,
Z.
Chen
, and
Y. G.
Liu
, “
A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization
,”
Energy
204
,
117957
(
2020
).
18.
J. F.
Li
,
L. X.
Wang
,
C.
Lyu
,
E. H.
Liu
,
Y. J.
Xing
, and
M.
Pecht
, “
A parameter estimation method for a simplified electrochemical model for Li-ion batteries
,”
Electrochim. Acta
275
,
50
58
(
2018
).
19.
J. Y.
Shao
,
J. F.
Li
,
W. Z.
Yuan
,
C. S.
Dai
,
Z. B.
Wang
,
M.
Zhao
et al, “
A novel method of discharge capacity prediction based on simplified electrochemical model-aging mechanism for lithium-ion batteries
,”
J. Energy Storage
61
,
106788
(
2023
).
20.
Y. X.
Wang
,
J. F.
Li
,
S. L.
Guo
,
M.
Zhao
,
W. W.
Cui
,
L. F.
Li
et al, “
A method of lithium-ion battery failure diagnosis based on parameter boundaries of heterogeneous multi-physics aging model
,”
J. Power Sources
576
,
233235
(
2023
).
21.
H.
Beelen
,
H. J.
Bergveld
, and
M. C. F.
Donkers
, “
Joint estimation of battery parameters and state of charge using an extended Kalman filter: A single-parameter tuning approach
,”
IEEE Trans. Contr. Syst. Technol.
29
(
3
),
1087
1101
(
2021
).
22.
Q. Q.
Yu
,
R.
Xiong
,
C.
Lin
,
W. X.
Shen
, and
J. J.
Deng
, “
Lithium-ion battery parameters and state-of-charge joint estimation based on H-infinity and unscented Kalman filters
,”
IEEE Trans. Veh. Technol.
66
(
10
),
8693
8701
(
2017
).
23.
R. H.
Guo
and
W. X.
Shen
, “
A model fusion method for online state of charge and state of power co-estimation of lithium-ion batteries in electric vehicles
,”
IEEE Trans. Veh. Technol.
71
(
11
),
11515
11525
(
2022
).
You do not currently have access to this content.