The high uncertainty of power generation in photovoltaic microgrids and the high cost of energy storage allocation limit the development of photovoltaic microgrids. Therefore, this study proposes a trading strategy mechanism for multiple photovoltaic microgrids (PMs) and shared energy storage operator (SESO) based on the Stackelberg game. The trading mechanism fully considers the loss cost of shared energy storage operation, the benefits of participating in the frequency regulation auxiliary service market, and the demand response characteristics of photovoltaic microgrids. Then, a source–load uncertainty risk model is constructed based on the information intermittent decision theory, which is improved by the confidence interval fuzzy set. Finally, a distributed combinatorial algorithm using mixed integer linear programming with an improved multiverse algorithm is used for the solution. The results show that introducing SESO effectively reduces all the operating costs of PMs, and the daily operational benefits of SESO reach 8774.56 yuan. Second, the frequency modulation (FM) performance score of the energy storage device is improved by 14.45%. The proposed game optimization model not only achieves a win-win situation for multiple players but also broadens the physical function of shared energy storage participating in FM service and realizes the risk preference regulation of operating players.

1.
L.
Yang
,
Z.
Hu
,
S.
Xie
,
S.
Kong
, and
W.
Lin
, “
Adjustable virtual inertia control of supercapacitors in PV-based AC microgrid cluster
,”
Electr. Power Syst. Res.
173
,
71
85
(
2019
).
2.
H. K.
Ren
,
M.
Ashtine
,
M.
McCulloch
, and
D.
Wallom
, “
An analytical method for sizing energy storage in microgrid systems to maximize renewable consumption and minimize unused storage capacity
,”
J. Energy Storage
68
,
107735
(
2023
).
3.
B.
Yildirim
,
M. A.
Elgendy
,
A. N.
Smith
, and
V.
Pickert
, “
Efficiency optimized power-sharing algorithm for modular battery energy storage systems
,”
IEEE Trans. Ind. Electron.
70
,
11299
11309
(
2023
).
4.
H.
Zhang
,
J.
Liu
,
W.
Zhou
,
Y.
Chen
, and
F.
Zheng
, “
Joint optimal operation and bidding strategy of scenic reservoir group considering energy storage sharing
,”
J. Electr. Eng. Technol.
19
,
61
71
(
2024
).
5.
M.
Nozarian
,
A.
Fereidunian
, and
A.
Hajizadeh
, “
An operationally induced approach to reliability-oriented ACOPF-constrained planning of interconnected multicarrier energy hubs: An MILP formulation
,”
Sustainable Energy Technol. Assess.
57
,
103196
(
2023
).
6.
J.
Ryu
and
J.
Kim
, “
A prospect-theoretic game approach to demand response market participation through energy sharing in energy storage systems under uncertainty
,”
Energy Rep.
9
,
1093
1103
(
2023
).
7.
D.
Liu
,
J.
Cao
, and
M.
Liu
, “
Joint optimization of energy storage sharing and demand response in microgrid considering multiple uncertainties
,”
Energies
15
,
3067
(
2022
).
8.
L.
Li
,
X.
Cao
, and
S.
Zhang
, “
Shared energy storage system for prosumers in a community: Investment decision, economic operation, and benefits allocation under a cost-effective way
,”
J. Energy Storage
50
,
104710
(
2022
).
9.
S.
Cao
,
H.
Zhang
,
K.
Cao
,
M.
Chen
,
Y.
Wu
, and
S.
Zhou
, “
Day-ahead economic optimal dispatch of microgrid cluster considering shared energy storage system and P2P transaction
,”
Front. Energy Res.
9
,
645017
(
2021
).
10.
Z.
Liu
,
J.
Yang
,
W.
Jiang
,
C.
Wei
,
P.
Zhang
, and
J.
Xu
, “
Research on optimized energy scheduling of rural microgrid
,”
Appl. Sci.
9
,
4641
(
2019
).
11.
F.
Feng
,
X.
Du
,
Q.
Si
, and
H.
Cai
, “
Relaxation‐based bi‐lever reformulation and decomposition algorithm‐based collaborative optimization of multi‐microgrid for cloud energy storage
,”
IET Gener., Transm. Distrib.
17
,
1624
1637
(
2023
).
12.
W.
Cao
,
J.-W.
Xiao
,
S.-C.
Cui
, and
X.-K.
Liu
, “
An efficient and economical storage and energy sharing model for multiple multi-energy microgrids
,”
Energy
244
,
123124
(
2022
).
13.
Z.
Shuqiang
,
W.
Yang
,
L.
Zhiwei
et al, “
Analysis of power system peaking capacity and economy considering wind power output uncertainty
,”
Power Syst. Technol.
46
(
05
),
1752
1761
(
2022
).
14.
H.
Zhang
,
D.
Yue
,
C.
Dou
,
X.
Xie
,
K.
Li
, and
G. P.
Hancke
, “
Resilient optimal defensive strategy of TSK fuzzy-model-based microgrids' system via a novel reinforcement learning approach
,”
IEEE Trans. Neural Networks Learn. Syst.
34
,
1921
1931
(
2023
).
15.
L.
Luo
,
S. S.
Abdulkareem
,
A.
Rezvani
,
M. R.
Miveh
,
S.
Samad
,
N.
Aljojo
, and
M.
Pazhoohesh
, “
Optimal scheduling of a renewable based microgrid considering photovoltaic system and battery energy storage under uncertainty
,”
J. Energy Storage
28
,
101306
(
2020
).
16.
L.
Ju
,
Z.
Tan
,
J.
Yuan
,
Q.
Tan
,
H.
Li
, and
F.
Dong
, “
A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response
,”
Appl. Energy
171
,
184
199
(
2016
).
17.
Y.
Cao
,
W.
Wei
,
C.
Laijun
et al, “
Supply inadequacy risk evaluation of stand-alone renewable powered heat-electricity energy systems: A data-driven robust approach
,”
IEEE Trans. Ind. Inf.
17
,
1937
(
2021
).
18.
P. J.
Zhao
,
J. Y.
Wu
,
W. H.
Zhang
et al, “
Cooperative peer to peer scheduling of multi-microgrids considering distribution network power flow and source-load uncertainty
,”
Power Syst. Technol.
46
(
12
),
4885
4896
(
2022
).
19.
L.
Xianshan
,
F.
Zijian
,
L.
Fei
et al, “
Game-based ptimal dispatching strategy for distribution network with multiple microgrids leasing shared energy storage
,”
Chin. J. Electr. Eng.
42
(
18
),
6611
6625
(
2022
).
20.
T.
Xin
,
C.
Laijun
,
L.
Xiaozhu
et al, “
Optimal scheduling for energy storage sharing among communities with photovoltaic resource based on stackelberg game and improved shapley value
,”
Power Syst. Technol
.
47
(
06
),
2252
2261
(
2023
).
21.
L.
Kaijun
,
W.
Junyong
,
D.
Liu
et al, “
Energy management optimization of micro energy grid based on hierarchical stackelberg game theory
,”
Power Syst. Technol.
43
(
03
),
973
983
(
2019
).
22.
D.
Chunxia
,
L.
Wei
,
Y.
Dong
et al, “
Multi-agent system based electricity market trading strategy within microgrid groups
,”
Power Syst. Technol.
43
(
05
),
1735
1744
(
2019
).
23.
Y.
Li
,
C.
Wang
,
G.
Li
, and
C.
Chen
, “
Optimal scheduling of integrated demand response-enabled integrated energy systems with uncertain renewable generations: A Stackelberg game approach
,”
Energy Convers. Manage.
235
, 113996 (2021).
24.
G.
Liu
,
G.
Wang
,
X.
Bai
et al, “
Dynamic pricing and low-carbon economic dispatch of Integrated energy system based on stackelberg game
,”
High Voltage Technol.
50
(
04
),
1436
1445
(
2024
).
25.
E.
Rebello
,
D.
Watson
, and
M.
Rodgers
, “
Developing, implementing and testing up and down regulation to provide AGC from a 10 MW wind farm during varying wind conditions
,”
J. Phys.: Conf. Ser.
1102
,
012032
(
2018
).
26.
B.
Li
,
X.
Wang
,
M.
Shahidehpour
,
C.
Jiang
, and
Z.
Li
, “
DER aggregator's data-driven bidding strategy using the information gap decision theory in a non-cooperative electricity market
,”
IEEE Trans. Smart Grid
10
,
6756
6767
(
2019
).
27.
Y.
Wu
,
C.
Liu
,
Z.
Lin
,
Y.
Ru
, and
T.
Huang
, “
Enhancing resilience by reducing critical load loss via an emergent trading framework considering possible resources isolation under typhoon
,”
IET Gener., Transm. Distrib.
17
,
3184
(
2023
).
28.
Y.
Shi
,
F.
Lv
,
X.
Gao
,
M.
Jiang
,
H.
Luo
, and
R.
Xu
, “
A Bi-level optimal operation model for small-scale active distribution networks considering the coupling fluctuation of spot electricity prices and renewable energy sources
,”
Energies
16
,
4507
(
2023
).
29.
Z.
Lei
,
M.
Liu
, and
Z.
Shen
, “
Analysis of strategic bidding of a DER aggregator in energy markets through the Stackelberg game model with the mixed-integer lower-level problem
,”
Int. J. Electr. Power Energy Syst.
152
,
109237
(
2023
).
30.
H.
Gao
,
W.
Cai
,
S.
He
,
C.
Liu
, and
J.
Liu
, “
Stackelberg game based energy sharing for zero-carbon community considering reward and punishment of carbon emission
,”
Energy
277
,
127629
(
2023
).
31.
S.
Li
,
L.
Zhang
,
L.
Nie
et al, “
Trading strategy and benefit optimization of load aggregators in integrated energy systems considering integrated demand response: A hierarchical Stackelberg game
,”
Energy
249
,
123678
(
2022
).
32.
U.
Lakhina
,
I.
Elamvazuthi
,
N.
Badruddin
,
A.
Jangra
,
B.-H.
Truong
, and
J. M.
Guerrero
, “
A cost-effective multiverse optimization algorithm for efficient power generation in a microgrid
,”
Sustainability
15
,
6358
(
2023
).
33.
J.
Yang
,
S.
Wang
,
L.
Chen
,
J.
Qiao
,
C.
Fernandez
, and
J. M.
Guerrero
, “
High-precision state of charge estimation of lithium-ion batteries based on joint compression factor particle swarm optimization-forgetting factor recursive least square-adaptive extended Kalman filtering
,”
J. Electrochem. Soc
170
,
060527
(
2023
).
34.
T. N.
Baranger
,
S.
Andrieux
, and
R.
Rischette
, “
Combined energy method and regularization to solve the Cauchy problem for the heat equation
,”
Inverse Probl. Sci. Eng.
22
,
199
212
(
2014
).
35.
U.
Lakhina
,
N.
Badruddin
,
I.
Elamvazuthi
,
A.
Jangra
,
T. H. B.
Huy
, and
J. M.
Guerrero
, “
An enhanced multi-objective optimizer for stochastic generation optimization in islanded renewable energy microgrids
,”
Mathematics
11
,
2079
(
2023
).
You do not currently have access to this content.