This research thoroughly investigates and models the energy and exergy efficiencies of a novel solar water heating system that includes integrated storage. The unique water heater design incorporates a spherical glass outer casing to enhance solar radiation absorption. This study evaluated three types of storage tanks: truncated conical, cylindrical, and spherical, all equipped with a top outlet and bottom intake for water circulation. A Computational Fluid Dynamic simulation in charging mode was utilized to evaluate thermal storage quality based on dimensionless numbers Richardson (Ri) and stratification (Str), energy efficiency (η), exergy efficiency (ε), and temperature profiles of eight fluid layers. At a solar radiation of 950 W m−2, the truncated cone tank has the highest thermal efficiency, reaching 0.84, while the spherical and cylindrical tanks have a thermal efficiency of 0.75 and 0.74, respectively. The findings indicate that the conical tank outperforms the other tanks in terms of both quantity and quality. Although the spherical tank is more energy-efficient than the cylindrical tank, it exhibits the lowest storage quality when the dimensionless time exceeds 0.2. Additionally, the research demonstrates how tank shape influences thermal layering and storage dynamics using a diffusion–advection equation.

1.
H.
Mousazadeh
,
A.
Keyhani
,
A.
Javadi
,
H.
Mobli
,
K.
Abrinia
, and
A.
Sharifi
, “
A review of principle and sun-tracking methods for maximizing solar systems output
,”
Renewable Sustainable Energy Rev.
13
(
8
),
1800
1818
(
2009
).
2.
B.
Samanta
and
K. R.
Al Balushi
, “
Estimation of incident radiation on a novel spherical solar collector
,”
Renewable Energy
14
(
1-4
),
241
247
(
1998
).
3.
Y.
Anupam Rao
and
A.
Somwanshi
, “
A comprehensive review on integrated collector-storage solar water heaters
,”
Mater. Today: Proc.
63
,
15
26
(
2022
).
4.
O.
Bakir
, “
Experimental investigation of a spherical solar collector
,”
M.S. thesis
(
Metu
,
2006
), see http://etd.lib.metu.edu.tr/upload/12607205/index.pdf.
5.
S.
Yari
,
H.
Safarzadeh
, and
M.
Bahiraei
, “
Experimental study of an absorber coil in spherical solar collector with practical dimensions at different flow rates
,”
Renewable Energy
180
,
1248
1259
(
2021
).
6.
S.
Yari
,
H.
Safarzadeh
, and
M.
Bahiraei
, “
Experimental study of storage system of a solar water heater equipped with an innovative absorber spherical double-walled tank immersed in a phase change material
,”
J. Energy Storage
61
,
106782
(
2023
).
7.
C.
Armenta-Déu
, “
Study and characterization of a spherical solar collector. Part II: Comparative analysis with flat-plate devices
,”
J. Energy Power Technol.
05
(
3
),
1
(
2023
).
8.
A.
Messaouda
,
M.
Hamdi
,
M.
Hazami
, and
A. A.
Guizani
, “
Dynamic testing of a new integrated collector storage solar water heater (ICSSWH) according to standard ISO 9459-5: Use of a numerical approach for long-term prediction in different climatic conditions
,”
Environ. Prog. Sustainable Energy
43
(
1
),
e14254
(
2024
).
9.
N. M.
Al-Najem
,
A. M.
Al-Marafie
, and
K. Y.
Ezuddin
, “
Analytical and experimental investigation of thermal stratification in storage tanks
,”
Int. J. Energy Res.
17
(
2
),
77
88
(
1993
).
10.
M. A.
Rosen
,
R.
Tang
, and
I.
Dincer
, “
Effect of stratification on energy and exergy capacities in thermal storage systems
,”
Int. J. Energy Res.
28
(
2
),
177
193
(
2004
).
11.
P.
Armstrong
,
D.
Ager
,
I.
Thompson
, and
M.
McCulloch
, “
Improving the energy storage capability of hot water tanks through wall material specification
,”
Energy
78
,
128
140
(
2014
).
12.
J.
Fan
and
S.
Furbo
, “
Thermal stratification in a hot water tank established by heat loss from the tank
,”
Sol. Energy
86
(
11
),
3460
3469
(
2012
).
13.
A. A.
Hegazy
and
M. R.
Diab
, “
Performance of an improved design for storage-type domestic electrical water-heaters
,”
Appl. Energy
71
(
4
),
287
306
(
2002
).
14.
S. M.
Hosseinnia
,
H.
Akbari
, and
M.
Sorin
, “
Numerical analysis of thermocline evolution during charging phase in a stratified thermal energy storage tank
,”
J. Energy Storage
40
,
102682
(
2021
).
15.
W.
Yaïci
,
M.
Ghorab
,
E.
Entchev
, and
S.
Hayden
, “
Three-dimensional unsteady CFD simulations of a thermal storage tank performance for optimum design
,”
Appl. Therm. Eng.
60
(
1-2
),
152
163
(
2013
).
16.
A.
Bouhdjar
and
A.
Harhad
, “
Numerical analysis of transient mixed convection flow in storage tank: Influence of fluid properties and aspect ratios on stratification
,”
Renewable Energy
25
(
4
),
555
567
(
2002
).
17.
T.
Chekifi
and
M.
Boukraa
, “
CFD applications for sensible heat storage: A comprehensive review of numerical studies
,”
J. Energy Storage
68
(
15
),
107893
(
2023
).
18.
A.
Li
,
F.
Cao
,
W.
Zhang
,
B.
Shi
, and
H.
Li
, “
Effects of different thermal storage tank structures on temperature stratification and thermal efficiency during charging
,”
Sol. Energy
173
,
882
892
(
2018
).
19.
L.
Peng
,
M.
Salem
,
V.
Blazek
,
L.
Prokop
,
M.
Al-Bahrani
, and
S.
Misak
, “
Thermal energy storage applications in solar water heaters: An updated review
,”
Sustainable Energy Technol. Assess.
57
,
103230
(
2023
).
20.
E.
Alptekin
and
M. A.
Ezan
, “
Performance investigations on a sensible heat thermal energy storage tank with a solar collector under variable climatic conditions
,”
Appl. Therm. Eng.
164
,
114423
(
2020
).
21.
M.-S.
Shin
,
H.-S.
Kim
,
D.-S.
Jang
,
S.-N.
Lee
,
Y.-S.
Lee
, and
H.-G.
Yoon
, “
Numerical and experimental study on the design of a stratified thermal storage system
,”
Appl. Therm. Eng.
24
(
1
),
17
27
(
2004
).
22.
K. G. T.
Hollands
and
M. F.
Lightstone
, “
A review of low-flow, stratified-tank solar water heating systems
,”
Sol. Energy
43
(
2
),
97
105
(
1989
).
23.
S.
Ievers
and
W.
Lin
, “
Numerical simulation of three-dimensional flow dynamics in a hot water storage tank
,”
Appl. Energy
86
(
12
),
2604
2614
(
2009
).
24.
Z.
Yang
,
H.
Chen
,
L.
Wang
,
Y.
Sheng
, and
Y.
Wang
, “
Comparative study of the influences of different water tank shapes on thermal energy storage capacity and thermal stratification
,”
Renewable Energy
85
,
31
44
(
2016
).
25.
H.
Khurana
,
S.
Tiwari
,
R.
Majumdar
, and
S. K.
Saha
, “
Comparative evaluation of circular truncated-cone and paraboloid shapes for thermal energy storage tank based on thermal stratification performance
,”
J. Energy Storage
34
,
102191
(
2021
).
26.
G.
Li
, “
Sensible heat thermal storage energy and exergy performance evaluations
,”
Renewable Sustainable Energy Rev.
53
,
897
923
(
2016
).
27.
A.
Castell
,
M.
Medrano
,
C.
Solé
, and
L. F.
Cabeza
, “
Dimensionless numbers used to characterize stratification in water tanks for discharging at low flow rates
,”
Renewable Energy
35
(
10
),
2192
2199
(
2010
).
28.
R. E.
Spall
, “
A numerical study of transient mixed convection in cylindrical thermal storage tanks
,”
Int. J. Heat Mass Transfer
41
(
13
),
2003
2011
(
1998
).
29.
L. J.
Shah
and
S.
Furbo
, “
Entrance effects in solar storage tanks
,”
Sol. Energy
75
(
4
),
337
348
(
2003
).
30.
ANSYS FLUENT theory guide 15.0. 33,
Canonsburg, PA
,
2013
.
31.
G. H.
Lee
and
A. J.
Cheong
, “
Effect of the accuracy order of the discretization scheme on the prediction performance for the turbulent flow structure inside fuel assembly: Sensitivity study
,” in
ASME/JSME/KSME 2015 Joint Fluids Engineering Conference, Seoul, South Korea, 26–31 July 2015
(
American Society of Mechanical Engineers
,
2015
), Paper No: AJKFluids2015-03027.
32.
S.
Li
,
Y.
Zhang
,
K.
Zhang
,
X.
Li
,
Y.
Li
, and
X.
Zhang
, “
Study on performance of storage tanks in solar water heater system in charge and discharge progress
,”
Energy Procedia
48
,
384
393
(
2014
).
33.
L. B.
Evans
,
R. C.
Reid
, and
E. M.
Drake
, “
Transient natural convection in a vertical cylinder
,”
AIChE J.
14
(
2
),
251
259
(
1968
).
34.
J. E. B.
Nelson
,
A. R.
Balakrishnan
, and
S.
Srinivasa Murthy
, “
Parametric studies on thermally stratified chilled water storage systems
,”
Appl. Therm. Eng.
19
(
1
),
89
115
(
1999
).
35.
H.
Otto
,
C.
Resagk
, and
C.
Cierpka
, “
Convective near-wall flow in thermally stratified hot water storage tanks
,” in
13th International Symposium on Particle Image Velocimetry – ISPIV 2019
,
Munich, Germany
, 22–24 July
2019
.
36.
F.
Khan
and
B. J.
Savilonis
, “
Thermal stratification in spherical tanks
,” in
ASME 2014 8th International Conference on Energy Sustainability Collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology, Boston, MA, 30 June–2 July 2014
(
American Society of Mechanical Engineers
,
2014
), Paper No: ES2014-6429.
37.
M. A.
Al-Nimr
, “
Temperature distribution inside a solar collector storage tank of finite wall thickness
,”
J. Sol. Energy Eng.
115
(
2
),
112
116
(
1993
).
38.
H.
Yoo
and
E.-T.
Pak
, “
Theoretical model of the charging process for stratified thermal storage tanks
,”
Sol. Energy
51
(
6
),
513
519
(
1993
).
39.
Y. M.
Han
,
R. Z.
Wang
, and
Y. J.
Dai
, “
Thermal stratification within the water tank
,”
Renewable Sustainable Energy Rev.
13
(
5
),
1014
1026
(
2009
).
40.
S. R.
Chaney
,
J. A. C.
Humphrey
,
L.
Month
, and
A.
Shah
, “
Flow and heat transfer of a stably stratified fluid through an enclosure
,”
J. Sol. Energy Eng.
106
(
3
),
261
270
(
1984
).
41.
H. Z.
Barakat
and
J. A.
Clark
, “
Analytical and experimental study of the transient laminar natural convection flows in partially filled liquid containers
,” in
International Heat Transfer Conference 3, Chicago, 7–12 August 1966
(
Begellhouse
,
Connecticut
,
2019
), pp.
152
162
.
42.
J.
Fernández-Seara
,
F. J.
Uhı´a
, and
J.
Sieres
, “
Experimental analysis of a domestic electric hot water storage tank. Part II: Dynamic mode of operation
,”
Appl. Therm. Eng.
27
(
1
),
137
144
(
2007
).
43.
J. A.
Duffie
and
W. A.
Beckman
,
Solar Engineering of Thermal Processes
(
John Wiley & Sons, Inc
.,
Hoboken, NJ
,
2013
).
44.
C.
Ould-Lahoucine
,
H.
Ramdani
, and
D.
Zied
, “
Energy and exergy performances of a TiO2-water nanofluid-based hybrid photovoltaic/thermal collector and a proposed new method to determine the optimal height of the rectangular cooling channel
,”
Sol. Energy
221
,
292
306
(
2021
).
45.
H.
Ramdani
and
C.
Ould-Lahoucine
, “
Study on the overall energy and exergy performances of a novel water-based hybrid photovoltaic-thermal solar collector
,”
Energy Convers. Manage.
222
,
113238
(
2020
).
You do not currently have access to this content.