Maintaining clean surfaces on solar panels is critical for maximizing energy efficiency, particularly in regions with high dust accumulation. Conventional cleaning methods, which often rely heavily on water, pose significant sustainability challenges, especially in water-scarce environments. This paper introduces an innovative self-cleaning solution for photovoltaic (PV) panels based on polyvinylidene fluoride (PVDF) piezoelectric films. The technology harnesses the inverse piezoelectric effect, whereby mechanical vibrations are generated when an alternating current (AC) voltage is applied to the PVDF film, effectively dislodging dust and particulate matter from the panel surface. Aluminum foil electrodes are affixed to the PVDF film, and vibrations are propagated across the surface to remove dust particles within a defined timeframe. Experimental results demonstrate the system's efficiency in removing particles while consuming minimal energy, making it particularly suitable for arid regions where water-based cleaning methods are impractical. Additionally, the PVDF films possess favorable mechanical and optical properties, including high transparency, flexibility, and cost-effectiveness, supporting their potential for large-scale deployment. The technology represents an environmentally friendly and water-saving alternative to traditional methods and has significant commercialization potential. This research paves the way for further development of self-cleaning PV technologies, offering a sustainable solution for maintaining solar panel performance in challenging environmental conditions.

1.
M. A.
Franco
and
S. N.
Groesser
, “
A systematic literature review of the solar photovoltaic value chain for a circular economy
,”
Sustainability
13
(
17
),
9615
(
2021
).
2.
IRENA
,
Global Energy Transformation: A Roadmap to 2050
(
International Renewable Energy Agency
,
Abu Dhabi
,
2018
).
3.
V.
Gupta
,
M.
Sharma
,
R. K.
Pachauri
, and
K. N.
Dinesh Babu
, “
Comprehensive review on effect of dust on solar photovoltaic system and mitigation techniques
,”
Sol. Energy
191
,
596
622
(
2019
).
4.
K.
Ilse
,
L.
Micheli
,
B. W.
Figgis
,
K.
Lange
,
D.
Daßler
,
H.
Hanifi
,
F.
Wolfertstetter
,
V.
Naumann
,
C.
Hagendorf
,
R.
Gottschalg
, and
J.
Bagdahn
, “
Techno-economic assessment of soiling losses and mitigation strategies for solar power generation
,”
Joule
3
(
10
),
2303
2321
(
2019
).
5.
M. H.
Bergin
,
C.
Ghoroi
,
D.
Dixit
,
J. J.
Schauer
, and
D. T.
Shindell
, “
Large reductions in solar energy production due to dust and particulate air pollution
,”
Environ. Sci. Technol. Lett.
4
(
8
),
339
344
(
2017
).
6.
S.
Panat
and
K. K.
Varanasi
, “
Electrostatic dust removal using adsorbed moisture–assisted charge induction for sustainable operation of solar panels
,”
Sci. Adv.
8
(
10
),
eabm0078
(
2022
).
7.
S.
Patel
,
J.
John
, and
A.
Orlov
, “
Innovative and sustainable approach to clean solar panel and increase solar energy generation
,”
Multistakeholder Forum on Science, Technology and Innovation
(UN DESA,
New York, NY,
2022
).
8.
A.
Syafiq
,
A. K.
Pandey
,
N. N.
Adzman
, and
N. A.
Rahim
, “
Advances in approaches and methods for self-cleaning of solar photovoltaic panels
,”
Sol. Energy
162
,
597
619
(
2018
).
9.
C. I.
Calle
,
C. R.
Buhler
,
M. R.
Johansen
,
M. D.
Hogue
, and
S. J.
Snyder
, “
Active dust control and mitigation technology for lunar and Martian exploration
,”
Acta Astronaut.
69
(
11
),
1082
1088
(
2011
).
10.
C. I.
Calle
,
C. R.
Buhler
,
J. L.
McFall
, and
S. J.
Snyder
, “
Particle removal by electrostatic and dielectrophoretic forces for dust control during lunar exploration missions
,”
J. Electrost.
67
(
2
),
89
92
(
2009
).
11.
M.
Fathi
,
M.
Abderrezek
, and
M.
Friedrich
, “
Reducing dust effects on photovoltaic panels by hydrophobic coating
,”
Clean Technol. Environ. Policy
19
(
2
),
577
585
(
2017
).
12.
R.
Nahar Myyas
,
M.
Al-Dabbasa
,
M.
Tostado-Véliz
, and
F.
Jurado
, “
A novel solar panel cleaning mechanism to improve performance and harvesting rainwater
,”
Sol. Energy
237
,
19
28
(
2022
).
13.
Soilar Technologies
, see https://soilar.tech/solar-panel-cleaning-systems-and-their-pros-and-cons/ for “
Solar panel cleaning systems and their pros and cons
” (
2022
); accessed: Aug 08, 2023.
14.
C.
Xiong
,
Y.
Zhang
,
G.
Chen
, and
Q.
Qiao
, “
Research on dust removal strategies of photovoltaic panels in ultra-high altitude photovoltaicdemonstration base
,”
J. Phys.: Conf. Ser.
2433
,
012025
(
2023
).
15.
A.
Younis
and
M.
Onsa
, “
A brief summary of cleaning operations and their effect on the photovoltaic performance in Africa and the Middle East
,”
Energy Rep.
8
,
2334
2347
(
2022
).
16.
L.
Wu
,
Z.
Jin
,
Y.
Liu
,
H.
Ning
,
X.
Liu
,
A.
Hu
, and
N.
Hu
, “
Recent advances in the preparation of PVDF-based piezoelectric materials
,”
Nanotechnol. Rev.
11
(
1
),
1386
1407
(
2022
).
17.
Y.-H.
Shin
et al, “
Mechanical fatigue resistance of piezoelectric PVDF polymers
,”
Micromachines
9
(
10
),
503
(
2018
).
18.
P.
Devi
and
K.
Ramachandran
, “
Dielectric studies on hybridised PVDF-ZNO nanocomposites
,”
J. Exp. Nanosci.
6
,
281
293
(
2011
).
19.
A. A.
Hussein
,
E.
Al-Kawaz
, and
Z. N. S.
Alhilly
, “
Investigations of optical, electrical and thermal properties of Piezo PMMA/PVDF membrane as electrical and advanced energy saving materials
,”
ARPN J. Eng. Appl. Sci.
13
,
8642
8649
(
2018
).
20.
J.
Han
,
M.
Saravanapavanantham
,
M. R.
Chua
,
J. H.
Lang
, and
V.
Bulović
, “
A versatile acoustically active surface based on piezoelectric microstructures
,”
Microsyst. Nanoeng.
8
(
1
),
55
(
2022
).
21.
H.
Mao
,
H.
Cao
,
W.
Fan
,
W.
Li
,
Y.
Wu
,
X.
Chen
,
M.
Qiu
,
H.
Verweji
, and
Y.
Fan
, “
Application of piezoelectric quartz for self-cleaning membrane preparation
,”
Ceram. Int.
48
(
12
),
16599
16610
(
2022
).
22.
M.
Elmasry
and
R.
Ramadan
, “
Enhancing the properties of PVDF/MFe2O4; (M: Co–Zn and Cu–Zn) nanocomposite for the piezoelectric optronic applications
,”
J. Mater. Sci.: Mater. Electron.
33
,
15946
15963
(
2022
).
23.
E.
Kar
,
N.
Bose
,
B.
Dutta
,
S.
Banerjee
,
N.
Mukherjee
, and
S.
Mukherjee
, “
2D SnO2 nanosheet/PVDF composite based flexible, self-cleaning piezoelectric energy harvester
,”
Energy Convers. Manage.
184
,
600
608
(
2019
).
24.
C.
Dong
,
Y.
Fu
,
W.
Zang
,
H.
He
,
L.
Xing
, and
X.
Xue
, “
Self-powering/self-cleaning electronic-skin basing on PVDF/TiO2 nanofibers for actively detecting body motion and degrading organic pollutants
,”
Appl. Surf. Sci.
416
,
424
431
(
2017
).
25.
R. A.
Damodar
,
S.-J.
You
, and
H.-H.
Chou
, “
Study the self-cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes
,”
J. Hazard. Mater.
172
(
2–3
),
1321
1328
(
2009
).
26.
A. J.
de Jesus Silva
,
M. M.
Contreras
,
C. R.
Nascimento
, and
M. F.
da Costa
, “
Kinetics of thermal degradation and lifetime study of poly(vinylidene fluoride) (PVDF) subjected to bioethanol fuel accelerated aging
,”
Heliyon
6
(
7
),
e04573
(
2020
).
27.
Aperion Audio
, see https://www.aperionaudio.com/blog/the-truth-about-speaker-impedance for “
The truth about speaker impedance
” (
2018
); accessed: Aug. 22, 2023.
28.
Texas Instruments
, see https://www.ti.com/product/TPA3116D2#design-development for “
TPA3116D2 data sheet, product information and support
,” Accessed: Aug. 19, 2023.
29.
S. J.
Chapman
, “
Transformers
,” in
Electric Machinery Fundamentals
, 4th ed. (
McGraw-Hill
,
New York, NY
,
2012
), pp.
72
73
.
30.
H.
Kawamoto
and
B.
Guo
, “
Improvement of an electrostatic cleaning system for removal of dust from solar panels
,”
J. Electrost.
91
,
28
33
(
2018
).
31.
D. J.
Small
, see https://smtnet.com/library/files/upload/Reliability-Considerations-of-Electrically-Conductive-Adhesives.pdf for “
Reliability considerations of electrically conductive adhesives
,” Loctite Corporation; Accessed: Nov. 24, 2024.
You do not currently have access to this content.