Cross-flow turbine (known as vertical-axis wind turbines or “VAWTs” in wind) blades encounter a relatively undisturbed inflow for the first half of each rotational cycle (“upstream sweep”) and then pass through their own wake for the latter half (“downstream sweep”). While most research on cross-flow turbine optimization focuses on the power-generating upstream sweep, we use single-bladed turbine experiments to show that the downstream sweep strongly affects time-averaged performance. We find that power generation from the upstream sweep continues to increase beyond the optimal tip-speed ratio. In contrast, the downstream sweep consumes power beyond the optimal tip-speed ratio due to unfavorable lift and drag directions relative to rotation and a potentially detrimental pitching moment arising from rotation-induced virtual camber. Downstream power degradation increases faster than upstream power generation, such that downstream sweep performance determines the optimal tip-speed ratio. In addition to performance measurements, particle image velocimetry data are obtained inside the turbine swept area at three tip-speed ratios. This illuminates the mechanisms underpinning the observed performance degradation in the downstream sweep and motivates an analytical model for a limiting case with high induction. Performance results are shown to be consistent across 55 unique combinations of chord-to-radius ratio, preset pitch angle, and Reynolds number, underscoring the general significance of the downstream sweep.

1.
M.
Mahmood
,
N.
Hayat
,
A. U.
Farooq
,
Z.
Ali
,
S. R.
Jamil
, and
Z.
Hussain
, “
Vertical axis wind turbine – A review of various configurations and design techniques
,”
Renewable Sustainable Energy Rev.
16
,
1926
1939
(
2012
).
2.
S.
Eriksson
,
H.
Bernhoff
, and
M.
Leijon
, “
Evaluation of different turbine concepts for wind power
,”
Renewable Sustainable Energy Rev.
12
,
1419
1434
(
2008
).
3.
A.
Snortland
,
I.
Scherl
,
B.
Polagye
, and
O.
Williams
, “
Cycle-to-cycle variations in cross-flow turbine performance and flow fields
,”
Exp. Fluids
64
,
188
(
2023
).
4.
S.
Le Fouest
and
K.
Mulleners
, “
The dynamic stall dilemma for vertical-axis wind turbines
,”
Renewable Energy
198
,
505
520
(
2022
).
5.
A.
Snortland
,
O.
Williams
, and
B.
Polagye
, “
Influence of near-blade hydrodynamics on cross-flow turbine performance
,” in
Proceedings of the 13th European Wave and Tidal Energy Conference
(
2019
), pp.
1
9
.
6.
A.
Rezaeiha
,
H.
Montazeri
, and
B.
Blocken
, “
Characterization of aerodynamic performance of vertical axis wind turbines: Impact of operational parameters
,”
Energy Convers. Manage.
169
,
45
77
(
2018
).
7.
M.
Dave
,
B.
Strom
,
A.
Snortland
,
O.
Williams
,
B.
Polagye
, and
J. A.
Franck
, “
Simulations of intracycle angular velocity control for a crossflow turbine
,”
AIAA J.
59
,
812
824
(
2021
).
8.
A.
Rezaeiha
,
H.
Montazeri
, and
B.
Blocken
, “
Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades
,”
Energy
165
,
1129
1148
(
2018
).
9.
Q.
Li
,
T.
Maeda
,
Y.
Kamada
,
J.
Murata
,
K.
Furukawa
, and
M.
Yamamoto
, “
Measurement of the flow field around straight-bladed vertical axis wind turbine
,”
J. Wind Eng. Ind. Aerodyn.
151
,
70
78
(
2016
).
10.
G.
Tescione
,
D.
Ragni
,
C.
He
,
C.
Simão Ferreira
, and
G.
van Bussel
, “
Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry
,”
Renewable Energy
70
,
47
61
(
2014
).
11.
M.
Dave
and
J. A.
Franck
, “
Comparison of RANS and LES for a cross-flow turbine in confined and unconfined flow
,”
J. Renewable Sustainable Energy
13
,
064503
(
2021
).
12.
A.
Bianchini
,
F.
Balduzzi
,
F.
Ferrara
, and
L.
Ferrari
, “
Virtual incidence effect on rotating airfoils in Darrieus wind turbines
,”
Energy Convers. Manage.
111
,
329
338
(
2016
).
13.
C.
Simão Ferreira
,
G.
Van Kuik
,
G.
Van Bussel
, and
F.
Scarano
, “
Visualization by PIV of dynamic stall on a vertical axis wind turbine
,”
Exp. Fluids
46
,
97
108
(
2009
).
14.
A.-J.
Buchner
,
M. W.
Lohry
,
L.
Martinelli
,
J.
Soria
, and
A. J.
Smits
, “
Dynamic stall in vertical axis wind turbines: Comparing experiments and computations
,”
J. Wind Eng. Ind. Aerodyn.
146
,
163
171
(
2015
).
15.
R.
Dunne
and
B.
McKeon
, “
Dynamic stall on a pitching and surging airfoil
,”
Exp. Fluids
56
,
157
(
2015
).
16.
K.
Mulleners
and
M.
Raffel
, “
The onset of dynamic stall revisited
,”
Exp. Fluids
52
,
779
793
(
2012
).
17.
W. J.
McCroskey
, “
The phenomenon of dynamic stall
,” Report No. NASA-TM-81264,
1981
.
18.
W.
Timmer
, “
Two-dimensional low-Reynolds number wind tunnel results for airfoil NACA 0018
,”
Wind Eng.
32
(
6
),
525
537
(
2008
).
19.
K. M.
Sébastien Le Fouest
, “
Optimal blade pitch control for enhanced vertical-axis wind turbine performance
,”
Nat. Commun.
15
,
2770
(
2024
).
20.
S.
Le Fouest
,
D.
Fernex
, and
K.
Mulleners
, “
Time scales of dynamic stall development on a vertical-axis wind turbine blade
,”
Flow
3
,
E11
(
2023
).
21.
A.
Hunt
,
B.
Strom
,
G.
Talpey
,
H.
Ross
,
I.
Scherl
,
S.
Brunton
,
M.
Wosnik
, and
B.
Polagye
, “
An experimental evaluation of the interplay between geometry and scale on cross-flow turbine performance
,”
Renewable Sustainable Energy Rev.
206
,
114848
(
2024
).
22.
A.
Rezaeiha
,
I.
Kalkman
, and
B.
Blocken
, “
Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine
,”
Appl. Energy
197
,
132
150
(
2017
).
23.
Q.
Li
,
T.
Maeda
,
Y.
Kamada
,
J.
Murata
,
K.
Shimizu
,
T.
Ogasawara
,
A.
Nakai
, and
T.
Kasuya
, “
Effect of solidity on aerodynamic forces around straight-bladed vertical axis wind turbine by wind tunnel experiments (depending on number of blades)
,”
Renewable Energy
96
,
928
939
(
2016
).
24.
D. G.
Goring
and
V. I.
Nikora
, “
Despiking acoustic Doppler velocimeter data
,”
J. Hydraul. Eng.
128
,
117
126
(
2002
).
25.
B.
Strom
,
N.
Johnson
, and
B.
Polagye
, “
Impact of blade mounting structures on cross-flow turbine performance
,”
J. Renewable Sustainable Energy
10
,
034504
(
2018
).
26.
A.
Hunt
,
C.
Stringer
, and
B.
Polagye
, “
Effect of aspect ratio on cross-flow turbine performance
,”
J. Renewable Sustainable Energy
12
,
054501
(
2020
).
27.
J.
Westerweel
and
F.
Scarano
, “
Universal outlier detection for PIV data
,”
Exp. Fluids
39
,
1096
1100
(
2005
).
28.
C.
Garrett
and
P.
Cummins
, “
The efficiency of a turbine in a tidal channel
,”
J. Fluid Mech.
588
,
243
251
(
2007
).
29.
H.-C.
Tsai
and
T.
Colonius
, “
Coriolis effect on dynamic stall in a vertical axis wind turbine
,”
AIAA J.
54
,
216
226
(
2016
).
30.
P. G.
Migliore
,
W. P.
Wolfe
, and
J. B.
Fanucci
, “
Flow curvature effects on Darrieus turbine blade aerodynamics
,”
J. Energy
4
,
49
55
(
1980
).
31.
A.
Hunt
,
B.
Strom
, and
G.
Talpey
, “
Data from: An experimental evaluation of the interplay between geometry and scale on cross-flow turbine performance
,”
Dryad
(2024).
32.
T.
Nishino
and
R. H.
Willden
, “
The efficiency of an array of tidal turbines partially blocking a wide channel
,”
J. Fluid Mech.
708
,
596
606
(
2012
).
33.
A.
Hunt
,
G.
Talpey
,
G.
Calandra
, and
B.
Polagye
, “
Performance characteristics and bluff-body modeling of high-blockage cross-flow turbine arrays with varying rotor geometry
,” arXiv:2410.19165 (
2024
).
You do not currently have access to this content.