Self-powered wireless monitoring systems, wireless electronic devices, and embedded microsystems have gained enormous interest in recent years due to the vast sensing and monitoring applications in various fields, including civil infrastructure, oil and gas industry, healthcare, environment, military, agriculture, and consumer electronics. The main component of these systems is a wireless sensor node (WSN). The continuous operation of WSN depends on an uninterrupted power source, which is now delivered from electrochemical batteries with short life cycles and related major environmental problems. One potential solution to avoid replacing batteries in WSNs is to explore energy harvesting as a sustainable method for either directly replacing batteries or enabling regular battery recharge. Various energies surround the wireless sensor nodes, including thermal, solar, vibrational, acoustic, and fluid flow. This paper discusses the recent advancements in the field of flow energy harvesters based on fluid flow in open environments as well as in pipelines and channels. Flow energy harvesters (FEHs) transform the energy from fluid flow into electrical energy. This electrical energy is then utilized to power WSN. Mainly, two types of FEHs, flow-induced rotation-based energy harvesters (mini turbines) and flow-induced vibration-based energy harvesters (electromagnetic, piezoelectric, and hybrid mechanisms-based harvesters), have been reviewed and discussed in detail concerning device architecture, fluid type, bluff body shapes, fluid pressure and velocity, conversion mechanism, performance parameters, and implementation. Most of the reported piezoelectric energy harvesters have overall sizes ranging from millimeters to centimeters. The power output of the flow-induced rotation-based energy harvester ranges from 0.1 to 170 mW, whereas the power output of piezoelectric flow-induced vibration-based energy harvesters ranges from 0.38 nW to 20 mW, and the power output of the reported electromagnetic flow-induced vibration-based energy harvester ranges from 2 nW to 234 mW. However, the reported output of hybrid flow energy harvesters (HFEHs) ranges from 16.55 μW to 648 mW. HFEHs can produce the highest power densities because of their combined piezoelectric and electromagnetic energy conversions.

1.
A.
Elancheziyan
,
J. C.
de Oliveira
, and
S.
Weber
, “
A new system for controlled testing of sensor network applications: Architecture, prototype and experimental evaluation
,”
Ad Hoc Networks
10
(
6
),
1101
1114
(
2012
).
2.
P.
Saxena
and
N.
Tandon
, “
Fault diagnostics and health monitoring of machines using wireless condition monitoring systems
,”
Int. J. Sci. Eng. Res.
6
(
4
),
178
–182 (
2015
).
3.
J.
Jenitta
and
S.
Rani
, “
Home automation using Android
,” in
International Conference on VLSI, Communication and Computer Communication
(AnaPub, 2022), pp. 39–42.
4.
C.
Yawut
and
S.
Kilaso
, “
A wireless sensor network for weather and disaster alarm systems
,” in
International Conference on Information and Electronics Engineering, IPCSIT
(JACSIT Press,
2011
), pp.
155
159
.
5.
D.
Kulkarni
,
S.
Shaikh
,
A.
Shirsath
, and
T.
Kadam
, “
Traffic and weather monitoring system using wireless sensor networks
,”
Int. J. Adv. Res. Comput. Commun. Eng.
4
(
3
),
631
634
(
2015
).
6.
D.
Vujić
, “
Wireless sensor networks applications in aircraft structural health monitoring
,”
J. Appl. Eng. Sci.
13
(
2
),
79
86
(
2015
).
7.
M.
Reza Akhondi
,
A.
Talevski
,
S.
Carlsen
, and
S.
Petersen
, “
Applications of wireless sensor networks in the oil, gas and resources industries
,” in
24th IEEE International Conference on Advanced Information Networking and Applications
,
2010
.
8.
J.
Zhu
,
X.
Zhang
,
H.
Luo
, and
E.
Sahraei
, “
Investigation of the deformation mechanisms of lithium-ion battery components using in-situ micro tests
,”
Appl. Energy
224
,
251
266
(
2018
).
9.
T.
Ma
,
H.
Yang
, and
L.
Lu
, “
Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems
,”
Appl. Energy
153
,
56
62
(
2015
).
10.
B.
Dunn
,
H.
Kamath
, and
J.
Tarascon
, “
Electrical energy storage for the grid: A battery of choices
,”
Science
334
(
6058
),
928
935
(
2011
).
11.
Izhar, M.
Iqbal
, and F. Khan, “
Hybrid acoustic, vibration, and wind energy harvester using piezoelectric transduction for self-powered wireless sensor node applications
,”
Energy Convers. Manage.
277
,
116635
(
2023
).
12.
F.
Yildiz
, “
Potential ambient energy-harvesting sources and techniques
,”
J. Technol. Stud.
35
(
1
), 40–48 (
2009
).
13.
M.
Pinuela
,
P. D.
Mitcheson
, and
S.
Lucyszyn
, “
Ambient RF energy harvesting in urban and semi-urban environments
,”
IEEE Trans. Microwave Theory Tech.
61
(
7
),
2715
2726
(
2013
).
14.
H. S.
Kim
,
J.-H.
Kim
, and
J.
Kim
, “
A review of piezoelectric energy harvesting based on vibration
,”
Int. J. Precis. Eng. Manuf.
12
(
6
),
1129
1141
(
2011
).
15.
S.
Roundy
,
P. K.
Wright
, and
J.
Rabaey
, “
A study of low level vibrations as a power source for wireless sensor nodes
,”
Comput. Commun.
26
(
11
),
1131
1144
(
2003
).
16.
A. M.
Zungeru
,
L.-M.
Ang
,
S.
Prabaharan
, and
K. P.
Seng
, “
Radio frequency energy harvesting and management for wireless sensor networks
,”
Green Mobile Devices Networks: Energy Optimization Scavenging Techniques
(
Routledge
,
2012
), Vol.
13
, pp.
341
368
.
17.
G.
Mahan
,
B.
Sales
, and
J.
Sharp
, “
Thermoelectric materials: New approaches to an old problem
,”
Phys. Today
50
(
3
),
42
47
(
1997
).
18.
S.
Akbari
, “
Energy harvesting for wireless sensor networks review
,” in
Proceedings of the Federated Conference on Computer Science and Information Systems
,
2014
.
19.
M.
Iqbal
et al, “
Vibration‐based piezoelectric, electromagnetic, and hybrid energy harvesters for microsystems applications: A contributed review
,”
Int. J. Energy Res.
45
,
65
(
2021
).
20.
Q.
Wen
,
X.
He
,
Z.
Lu
,
R.
Streiter
, and
T.
Otto
, “
A comprehensive review of miniatured wind energy harvesters
,”
Nano Mater. Sci.
3
,
170
(
2021
).
21.
C. C.
Federspiel
and
J.
Chen
, “
Air-powered sensor
,” in
Sensors, IEEE, Toronto, ON, Canada
(
IEEE
,
2003
), Vol.
1
, pp.
22
25
.
22.
D.
Rancourt
,
A.
Tabesh
, and
L. G.
Fréchette
, “
Evaluation of centimeter-scale micro windmills: Aerodynamics and electromagnetic power generation
,” in
Proceedings of the PowerMEMS
,
2007
, Vol.
20079
.
23.
D. A.
Howey
,
A.
Bansal
, and
A. S.
Holmes
, “
Design and performance of a centimetre-scale shrouded wind turbine for energy harvesting
,”
Smart Mater. Struct.
20
(
8
),
085021
(
2011
).
24.
R. A.
Kishore
,
T.
Coudron
, and
S.
Priya
,
Small-Scale Wind Energy Portable Turbine (SWEPT)
(
Elsevier
,
2013
).
25.
D.
Krähenbühl
,
C.
Zwyssig
,
H.
Weser
, and
J. W.
Kolar
, “
Theoretical and experimental results of a mesoscale electric power generation system from pressurized gas flow
,”
J. Micromech. Microeng.
19
(
9
),
094009
(
2009
).
26.
Y.
Fang
et al, “
An efficient electromagnetic wind energy harvester for self-powered wireless sensor node
,” in
19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications
,
2019
.
27.
X.
Wu
and
D.-W.
Lee
, “
An electromagnetic energy harvesting device based on high efficiency windmill structure for wireless forest fire monitoring application
,”
Sens. Actuators, A
219
,
73
79
(
2014
).
28.
T.
Wang
and
Y.
Zhang
, “
Design, analysis, and evaluation of a compact electromagnetic energy harvester from water flow for remote sensors
,”
Energies
11
(
6
),
1424
(
2018
).
29.
S.
Boisseau
,
A.-B.
Duret
,
M.
Perez
,
E.
Jallas
, and
E.
Jallas
, “
Water flow energy harvesters for autonomous flowmeters
,”
J. Phys.
773
,
012019
(
2016
).
30.
D.
Hoffmann
,
A.
Willmann
,
R.
Göpfert
,
P.
Becker
,
B.
Folkmer
, and
Y.
Manoli
, “
Energy harvesting from fluid flow in water pipelines for smart metering applications
,”
J. Phys.
476
,
012104
(
2013
).
31.
S.
Roy
,
M. H.
Kabir
,
M.
Salauddin
, and
M. A.
Halim
, “
An electromagnetic wind energy harvester based on rotational magnet pole-pairs for autonomous IoT applications
,”
Energies
15
(
15
),
5725
(
2022
).
32.
F. J.
Xu
,
F. G.
Yuan
,
J. Z.
Hu
, and
Y. P.
Qiu
, “
Design of a miniature wind turbine for powering wireless sensors
,”
Proc. SPIE
7647
,
764741
(
2010
).
33.
A. S.
Holmes
,
G.
Hong
, and
K. R.
Pullen
, “
Axial-flux permanent magnet machines for micropower generation
,”
J. Microelectromech. Syst.
14
(
1
),
54
62
(
2005
).
34.
H.
Hirahara
,
M. Z.
Hossain
,
M.
Kawahashi
, and
Y.
Nonomura
, “
Testing basic performance of a very small wind turbine designed for multi-purposes
,”
Renewable Energy
30
(
8
),
1279
1297
(
2005
).
35.
L.
Gu
and
C.
Livermore
, “
Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation
,”
Smart Mater. Struct.
20
(
4
),
045004
(
2011
).
36.
S.
Priya
,
C.-T.
Chen
,
D.
Fye
, and
J.
Zahnd
, “
Piezoelectric windmill: A novel solution to remote sensing
,”
Jpn. J. Appl. Phys., Part 2
44
(
1L
),
L104
(
2005
).
37.
S.
Priya
, “
Modeling of electric energy harvesting using piezoelectric windmill
,”
Appl. Phys. Lett.
87
(
18
),
184101
(
2005
).
38.
C.-T.
Chen
,
R. A.
Islam
, and
S.
Priya
, “
Electric energy generator
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
53
(
3
),
656
661
(
2006
).
39.
R.
Myers
,
M.
Vickers
,
H.
Kim
, and
S.
Priya
, “
Small scale windmill
,”
Appl. Phys. Lett.
90
(
5
),
054106
(
2007
).
40.
S.
Bressers
,
D.
Avirovik
,
M.
Lallart
,
D. J.
Inman
, and
S.
Priya
, “
Contact-less wind turbine utilizing piezoelectric bimorphs with magnetic actuation
,” in
Proceedings of the 28th IMAC, A Conference on Structural Dynamic
(
Springer
,
2011
), pp.
233
243
.
41.
M. A.
Karami
,
J. R.
Farmer
, and
D. J.
Inman
, “
Parametrically excited nonlinear piezoelectric compact wind turbine
,”
Renewable Energy
50
,
977
987
(
2013
).
42.
Y. B.
Jeon
,
R.
Sood
,
J. H.
Jeong
, and
S.-G.
Kim
, “
MEMS power generator with transverse mode thin film PZT
,”
Sens. Actuators, A
122
(
1
),
16
22
(
2005
).
43.
M.
Hamlehdar
,
A.
Kasaeian
, and
M. R.
Safaei
, “
Energy harvesting from fluid flow using piezoelectrics: A critical review
,”
Renewable Energy
143
,
1826
1838
(
2019
).
44.
Z.
Li
,
S.
Zhou
,
H.
Zhang
, and
S.
Zhou
, “
Periodic solutions and bifurcations of a tristable flutter-based energy harvester
,”
Aerosp. Sci. Technol.
144
,
108815
(
2024
).
45.
R.
Song
,
X.
Shan
,
F.
Lv
,
J.
Li
, and
T.
Xie
, “
A novel piezoelectric energy harvester using the macro fiber composite cantilever with a bicylinder in water
,”
Appl. Phys.
5
(
4
),
1942
1954
(
2015
).
46.
J.
Xie
,
J.
Yang
,
H.
Hu
,
Y.
Hu
, and
X.
Chen
, “
A piezoelectric energy harvester based on flow-induced flexural vibration of a circular cylinder
,”
J. Intell. Mater. Syst. Struct.
23
(
2
),
135
139
(
2012
).
47.
Q.
Wen
,
R.
Schulze
,
D.
Billep
,
T.
Otto
, and
T.
Gessner
, “
Modeling and optimization of a vortex-induced vibration fluid kinetic energy harvester
,”
Procedia Eng.
87
,
779
782
(
2014
).
48.
F. U. Q.
Qureshi
,
A.
Muhtaroğlu
, and
K.
Tuncay
, “
Sensitivity analysis for piezoelectric energy harvester and bluff body design toward underwater pipeline monitoring
,”
J. Energy Syst.
1
(
1
),
10
20
(
2017
).
49.
Y.
Hu
,
B.
Yang
,
X.
Chen
,
X.
Wang
, and
J.
Liu
, “
Modeling and experimental study of a piezoelectric energy harvester from vortex shedding-induced vibration
,”
Energy Convers. Manage.
162
,
145
158
(
2018
).
50.
L.
Zhang
,
H. L.
Dai
,
A.
Abdelkefi
, and
L.
Wang
, “
Improving the performance of aeroelastic energy harvesters by an interference cylinder
,”
Appl. Phys. Lett.
111
(
7
),
073904
(
2017
).
51.
L. A.
Weinstein
,
M. R.
Cacan
,
P. M.
So
, and
P. K.
Wright
, “
Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows
,”
Smart Mater. Struct.
21
(
4
),
045003
(
2012
).
52.
X.
Gao
,
W.-H.
Shih
, and
W. Y.
Shih
, “
Flow energy harvesting using piezoelectric cantilevers with cylindrical extension
,”
IEEE Trans. Ind. Electron.
60
(
3
),
1116
1118
(
2013
).
53.
H.
Lee
,
S.
Sherrit
,
L.
Tosi
,
P.
Walkemeyer
, and
T.
Colonius
, “
Piezoelectric energy harvesting in internal fluid flow
,”
Sensors
15
(
10
),
26039
26062
(
2015
).
54.
X.
Shan
,
R.
Song
,
B.
Liu
, and
T.
Xie
, “
Novel energy harvesting: A macro fiber composite piezoelectric energy harvester in the water vortex
,”
Ceram. Int.
41
,
S763
S767
(
2015
).
55.
Z.
Li
,
H.
Zhang
,
G.
Litak
, and
S.
Zhou
, “
Periodic solutions and frequency lock-in of vortex-induced vibration energy harvesters with nonlinear stiffness
,”
J. Sound Vib.
568
,
117952
(
2024
).
56.
D.-A.
Wang
and
N.-Z.
Liu
, “
A shear mode piezoelectric energy harvester based on a pressurized water flow
,”
Sens. Actuators, A
167
(
2
),
449
458
(
2011
).
57.
R.
Song
,
X.
Shan
,
F.
Lv
, and
T.
Xie
, “
A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension
,”
Ceram. Int.
41
,
S768
S773
(
2015
).
58.
X.
Shan
,
R.
Song
,
M.
Fan
, and
T.
Xie
, “
Energy-harvesting performances of two tandem piezoelectric energy harvesters with cylinders in water
,”
Appl. Sci.
6
(
8
),
230
(
2016
).
59.
M.
Demori
,
M.
Ferrari
,
V.
Ferrari
,
S.
Farisè
, and
P.
Poesio
, “
Energy harvesting from Von Karman vortices in airflow for autonomous sensors
,”
Procedia Eng.
87
,
775
778
(
2014
).
60.
A.
Erturk
,
W. G. R.
Vieira
,
C.
De Marqui
, and
D. J.
Inman
, “
On the energy harvesting potential of piezoaeroelastic systems
,”
Appl. Phys. Lett.
96
(
18
),
184103
184103
(
2010
).
61.
D.-A.
Wang
and
H.-H.
Ko
, “
Piezoelectric energy harvesting from flow-induced vibration
,”
J. Micromech. Microeng.
20
(
2
),
025019
(
2010
).
62.
M.
Zhou
,
Y.
Fu
,
L.
Liu
,
Z.
Xu
,
M. S. H.
Al-Furjan
, and
W.
Wang
, “
Modeling and preliminary analysis of piezoelectric energy harvester based on cylindrical tube conveying fluctuating fluid
,”
Meccanica
53
(
9
),
2379
2392
(
2018
).
63.
M. M.
Hassan
,
M. Y.
Hossain
,
R.
Mazumder
,
R.
Rahman
, and
M. A.
Rahman
, “
Vibration energy harvesting in a small channel fluid flow using piezoelectric transducer
,”
AIP Conf. Proc.
1754
,
050041
(
2016
).
64.
D.-A.
Wang
,
H.-T.
Pham
,
C.-W.
Chao
, and
J. M.
Chen
, “
A piezoelectric energy harvester based on pressure fluctuations in Kármán vortex street
,” in
World Renewable Energy Congress-Sweden
, Linköping, Sweden,
2011
.
65.
I.
Aramendia
,
U.
Fernandez-Gamiz
,
E.
Zulueta Guerrero
,
J.
Lopez-Guede
, and
J.
Sancho
, “
Power control optimization of an underwater piezoelectric energy harvester
,”
Appl. Sci.
8
(
3
),
389
(
2018
).
66.
M. S.
Bhuyan
,
B. Y.
Majlis
,
M.
Othman
,
H.
Sawal
,
C.
Kalaivani
, and
S.
Islam
, “
Development of a fluid actuated piezoelectric micro energy harvester: Finite element modeling simulation and analysis
,”
Asian J. Sci. Res.
6
(
4
),
691
(
2013
).
67.
K. A.
Cunefare
,
E. A.
Skow
,
A.
Erturk
,
J.
Savor
,
N.
Verma
, and
M. R.
Cacan
, “
Energy harvesting from hydraulic pressure fluctuations
,”
Smart Mater. Struct.
22
(
2
),
025036
(
2013
).
68.
H.
Shukla
,
H.
Desai
,
J.
Sorber
, and
K. R.
Piratla
, “
Evaluation of energy harvesting potential in water pipelines to power sustainable monitoring systems
,” in
Proceeding of the Construction Research Congress
,
2018
.
69.
Y.
Shen
,
J.
Wang
, and
M. M.
Alam
, “
FIV and energy harvesting using bluff body piezoelectric water energy harvester with different cross-sections
,”
Ocean Eng.
288
,
116121
(
2023
).
70.
B.
Usman
,
S. S.
Adamu
, and
M. T.
Jimoh
, “
Harvesting energy from flow-induced vibration in fixed-fixed and fixed-pinned suported pipleline: Numerical approach
,” in
IEEE PES/IAS PowerAfrica
(
IEEE
, 2019).
71.
W. U.
Rahman
and
F. U.
Khan
, “
Modeling and simulation of flow-based circular plate type piezoelectric energy harvester for pipeline's monitoring
,” in
Proceedings of the 22nd International Multitopic Conference, INMIC
(
IEEE
,
2019
).
72.
H.-D. T.
Nguyen
,
H.-T.
Pham
, and
D.-A.
Wang
, “
A miniature pneumatic energy generator using Kármán vortex street
,”
J. Wind Eng. Ind. Aerodyn.
116
,
40
48
(
2013
).
73.
X.
Ma
,
Z.
Li
,
H.
Zhang
, and
S.
Zhou
, “
Dynamic modeling and analysis of a tristable vortex-induced vibration energy harvester
,”
J. Mech. Syst. Signal Process.
187
,
109924
(
2023
).
74.
F. U.
Khan
and
Izhar
, “
Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion
,”
Rev. Sci. Instrum.
87
(
2
),
025003
(
2016
).
75.
F. U.
Khan
and
Izhar
, “
Acoustic-based electrodynamic energy harvester for wireless sensor nodes application
,”
Int. J. Mater. Sci. Eng.
1
(
2
),
72
78
(
2013
).
76.
F. U.
Khan
and
Izhar
, “
State of the art in acoustic energy harvesting
,”
J. Micromech. Microeng.
25
(
2
),
023001
(
2015
).
77.
S.
Bakhtiar
,
F. U.
Khan
,
W. U.
Rahman
,
A. S.
Khan
,
M. M.
Ahmad
, and
M.
Iqbal
, “
A pressure-based electromagnetic energy harvester for pipeline monitoring applications
,”
J. Sens.
2022
,
6529623
.
78.
D.-A.
Wang
,
C.-Y.
Chiu
, and
H.-T.
Pham
, “
Electromagnetic energy harvesting from vibrations induced by Kármán vortex street
,”
Mechatronics
22
(
6
),
746
756
(
2012
).
79.
S.-H.
Kim
et al, “
An electromagnetic energy scavenger from direct airflow
,”
J. Micromech. Microeng.
19
(
9
),
094010
(
2009
).
80.
D.-A.
Wang
and
K.-H.
Chang
, “
Electromagnetic energy harvesting from flow-induced vibration
,”
Microelectron. J.
41
(
6
),
356
364
(
2010
).
81.
S.
Bakhtiar
and
F. U.
Khan
, “
Analytical modeling and simulation of an electromagnetic energy harvester for pulsating fluid flow in pipeline
,”
Sci. World J.
2019
,
5682517
.
82.
S.
Bakhtiar
and
F. U.
Khan
, “
Energy harvesting from pulsating fluid flow for pipeline monitoring systems
,” in
International Symposium on Recent Advances in Electrical Engineering (RAEE)
,
Islamabad, Pakistan
,
2019
.
83.
I.
Ahmad
,
M. M.
Ur Rehman
,
M.
Khan
,
A.
Abbas
,
S.
Ishfaq
, and
S.
Malik
, “
Flow‐based electromagnetic‐type energy harvester using microplanar coil for IoT sensors application
,”
Int. J. Energy Res.
43
(
10
),
5384
5391
(
2019
).
84.
A.
Bramhanand
and
H.
Kim
, “
Microfluidic energy harvesting system for high force and large deflection accommodation
,” doctoral dissertation (
University of Utah
,
2013
).
85.
F. U.
Khan
and
S.
Ahmad
, “
Flow type electromagnetic based energy harvester for pipeline health monitoring system
,”
Energy Convers. Manage.
200
(
9
),
112089
(
2019
).
86.
Z.
Lu
,
Q.
Wen
,
X.
He
, and
Z.
Wen
, “
A flutter-based electromagnetic wind energy harvester: Theory and experiments
,”
Appl. Sci.
9
(
22
),
4823
(
2019
).
87.
F. U.
Khan
, “
A vibration‐based electromagnetic and piezoelectric hybrid energy harvester
,”
Int. J. Energy Res.
44
(
8
),
6894
6916
(
2020
).
88.
J.
Zhao
,
H.
Zhang
,
F.
Su
, and
Z.
Yin
, “
A novel model of piezoelectric- electromagnetic hybrid energy harvester based on vortex-induced vibration
,” in
International Conference on Green Energy and Applications (ICGEA)
,
2017
.
89.
W. U.
Rahman
and
F. U.
Khan
, “
A hybrid flow energy harvester using combined piezoelectric and electromagnetic transductions for pipeline network monitoring
,”
J. Intell. Mater. Syst. Struct.
34
(
13
),
1486
1502
(
2023
).
90.
A. G. A.
Muthalif
,
M.
Hafizh
,
J.
Renno
, and
M. R.
Paurobally
, “
A hybrid piezoelectric-electromagnetic energy harvester from vortex-induced vibrations in fluid-flow; the influence of boundary condition in tuning the harvester
,”
Energy Convers. Manage.
256
,
115371
(
2022
).
91.
M.
Hafizh
et al, “
A hybrid piezoelectric–electromagnetic nonlinear vibration energy harvester excited by fluid flow
,”
C. R. Méc.
349
(
1
),
65
81
(
2021
).
92.
K.-J. I.
Egbe
,
A. M.
Nazar
, and
P.
Jiao
, “
Piezoelectric-triboelectric-electromagnetic Hybrid Rotational Energy Harvesters (H-REH)
,”
Int. J. Mech. Sci.
235
,
107722
(
2022
).
93.
L.
He
,
Y.
Han
,
L.
Sun
,
H.
Wang
,
Z.
Zhang
, and
G.
Cheng
, “
A rotating piezoelectric-electromagnetic hybrid harvester for water flow energy
,”
Energy Convers. Manage.
290
,
117221
117221
(
2023
).
94.
Z.
Li
,
S.
Zhou
, and
X.
Li
, “
A piezoelectric–electromagnetic hybrid flutter-based wind energy harvester: Modeling and nonlinear analysis
,”
Int. J. Non-Linear Mech.
144
,
104051
(
2022
).
95.
J. Y.
Cho
et al, “
Design of hydro electromagnetic and piezoelectric energy harvesters for a smart water meter system
,”
Sens. Actuators, A
261
,
261
267
(
2017
).
96.
U.
Javed
and
A.
Abdelkefi
, “
Characteristics and comparative analysis of piezoelectric-electromagnetic energy harvesters from vortex-induced oscillations
,”
Nonlinear Dyn.
95
(
4
),
3309
3333
(
2019
).
97.
X.
Li
,
Z.
Li
,
B.
Liu
,
J.
Zhang
, and
W.
Zhu
, “
Numerical research on a vortex shedding induced piezoelectric-electromagnetic energy harvester
,”
J. Intell. Mater. Syst. Struct.
33
(
1
),
105
120
(
2021
).
98.
M.
Iqbal
and
F. U.
Khan
, “
Hybrid vibration and wind energy harvesting using combined piezoelectric and electromagnetic conversion for bridge health monitoring applications
,”
Energy Convers. Manage.
172
,
611
618
(
2018
).
99.
M.
Al-Riyami
,
I.
Bahadur
, and
H.
Ouakad
, “
There is plenty of room inside a bluff body: A hybrid piezoelectric and electromagnetic wind energy harvester
,”
Energies
15
(
16)
,
6097
(
2022
).
You do not currently have access to this content.