Ammonia production is a significant source of carbon emissions globally, particularly in the agricultural sector, where it is extensively used as a fertilizer. This research suggests a potential avenue to reduce the carbon footprint of corn production for biofuels in the US Corn Belt. Conventional methods of producing nitrogenous fertilizers derived from ammonia are responsible for the highest CO2 emissions in the life cycle of corn production. We estimate that the total CO2 emissions can be reduced from 3.09 kg CO2 to 2.07 kg CO2 per bushel of corn (33% reduction) when conventional ammonia is replaced with green ammonia. If conventional ammonia is replaced with blue ammonia with carbon capture and storage, the total CO2 emissions can be reduced from 3.09 kg CO2 to 2.27 kg CO2 per bushel of corn (26% reduction). Despite these environmental benefits, our economic analysis reveals that even with policy incentives such as the 45Q and 45V tax credits, low-carbon-intensity ammonia is not yet cost-competitive with conventional ammonia. Renewable (green) ammonia, for instance, remains significantly more expensive at $532 (2024 US Dollar) per metric ton with 45V incentives compared to conventional ammonia at $249 per metric ton. Blue ammonia, even with the 45Q credit, costs $289 per metric ton—still higher than conventional ammonia. However, when a tiered carbon tax of $85 per ton of CO2 is applied to conventional ammonia, raising its cost to $326 per metric ton, blue ammonia becomes cost-competitive, but green ammonia still lags behind. This highlights the need for carbon pricing policies to enable the shift toward lower-carbon ammonia production, as tax credits alone are insufficient to close the cost gap.

1.
J.
Hanson
,
J.
Hendrickson
, and
D.
Archer
, “
Challenges for maintaining sustainable agricultural systems in the United States
,”
Renewable Agric. Food Syst.
23
,
325
334
(
2008
).
2.
B. K.
Sovacool
,
S.
Griffiths
,
J.
Kim
, and
M.
Bazilian
, “
Climate change and industrial f-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions
,”
Renewable Sustainable Energy Rev.
141
,
110759
(
2021
).
3.
S.
Kim
and
B. E.
Dale
, “
Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production
,”
Environ. Sci. Technol.
42
,
6028
6033
(
2008
).
4.
K.
Banger
,
C.
Wagner-Riddle
,
B. B.
Grant
,
W. N.
Smith
,
C.
Drury
, and
J.
Yang
, “
Modifying fertilizer rate and application method reduces environmental nitrogen losses and increases corn yield in Ontario
,”
Sci. Total Environ.
722
,
137851
(
2020
).
5.
M.
Wang
,
M.
Wu
, and
H.
Huo
, “
Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types
,”
Environ. Res. Lett.
2
,
024001
(
2007
).
6.
U.
Lee
,
H.
Kwon
,
M.
Wu
, and
M.
Wang
, “
Retrospective analysis of the US corn ethanol industry for 2005–2019: Implications for greenhouse gas emission reductions
,”
Biofuels, Bioprod. Biorefin.
15
,
1318
1331
(
2021
).
7.
S.
Yu
,
T.
Xiang
,
N. S.
Alharbi
,
B. A.
Al-Aidaroos
, and
C.
Chen
, “
Recent development of catalytic strategies for sustainable ammonia production
,”
Chin. J. Chem. Eng.
62
,
65
113
(
2023
).
8.
See https://greet.anl.gov/ for GREET model.
9.
K.
Lee
,
X.
Liu
,
P.
Vyawahare
,
P.
Sun
,
A.
Elgowainy
, and
M.
Wang
, “
Techno-economic performances and life cycle greenhouse gas emissions of various ammonia production pathways including conventional, carbon-capturing, nuclear-powered, and renewable production
,”
Green Chem.
24
,
4830
4844
(
2022
).
10.
See https://www.cornnratecalc.org/calculator for discussion on the methods of how to calculate the return to N application and to find the maximum return to N (MRTN) at selected prices of N and corn directly from recent research data.
11.
US Environmental Protection Agency (EPA), US Congress,
Energy policy act of 2005
,”
2005
, see https://www.energy.gov/articles/energy-policy-act-2005.
12.
US Environmental Protection Agency (EPA), US Congress,
Energy independence and security act of 2007
,”
2007
, see https://www.congress.gov/110/plaws/publ140/PLAW-110publ140.pdf.
13.
K.
Bracmort
,
The Renewable Fuel Standard (RFS): An Overview
(Library of Congress public edition,
2018
).
14.
J. M.
Endres
,
T. A.
Slating
, and
C. J.
Miller
, “
The biomass crop assistance program: Orchestrating the government's first significant step to incentivize biomass production for renewable energy
,”
Environ. Law Rep.
40
,
10066
(
2010
).
15.
M. D.
Goebes
,
R.
Strader
, and
C.
Davidson
, “
An ammonia emission inventory for fertilizer application in the United States
,”
Atmos. Environ.
37
,
2539
2550
(
2003
).
16.
S.
Ghavam
,
M.
Vahdati
,
I.
Wilson
, and
P.
Styring
, “
Sustainable ammonia production processes
,”
Front. Energy Res.
9
,
34
(
2021
).
17.
O. A.
Ojelade
,
S. F.
Zaman
, and
B.-J.
Ni
, “
Green ammonia production technologies: A review of practical progress
,”
J. Environ. Manage.
342
,
118348
(
2023
).
18.
H.
Bouaboula
,
M.
Ouikhalfan
,
I.
Saadoune
,
J.
Chaouki
,
A.
Zaabout
, and
Y.
Belmabkhout
, “
Addressing sustainable energy intermittence for green ammonia production
,”
Energy Rep.
9
,
4507
4517
(
2023
).
19.
C.
Wang
,
S. D.
Walsh
,
T.
Longden
,
G.
Palmer
,
I.
Lutalo
, and
R.
Dargaville
, “
Optimising renewable generation configurations of off-grid green ammonia production systems considering Haber–Bosch flexibility
,”
Energy Convers. Manage.
280
,
116790
(
2023
).
20.
Ammonia Energy Association (AEA),
Target top regional fuel ports, spend $2 trillion to enable ammonia marine fuel by 2050
,
2024
.
21.
S.
Arora
,
M.
Wu
, and
M.
Wang
, “
Update of distillers grains displacement ratios for corn ethanol life-cycle analysis
,”
Technical Report No. ANL/ESD/11-1
,
Argonne National Lab. (ANL)
,
Argonne, IL
,
2011
.
22.
J. D.
Stamper
, “
Evaluation of method of placement, timing, and rate of application for anhydrous ammonia in no-till corn production
,” Ph.D. thesis (
Kansas State University
,
2009
).
23.
D.
Saygin
,
H.
Blanco
,
F.
Boshell
,
J.
Cordonnier
,
K.
Rouwenhorst
,
P.
Lathwal
, and
D.
Gielen
, “
Ammonia production from clean hydrogen and the implications for global natural gas demand
,”
Sustainability
15
,
1623
(
2023
).
24.
H.
Ishaq
and
C.
Crawford
, “
Review and evaluation of sustainable ammonia production, storage and utilization
,”
Energy Convers. Manage.
300
,
117869
(
2024
).
25.
F.
Paulot
and
D. J.
Jacob
, “
Hidden cost of us agricultural exports: Particulate matter from ammonia emissions
,”
Environ. Sci. Technol.
48
,
903
908
(
2014
).
26.
L. E.
Scherger
,
V.
Zanello
,
D.
Lafont
, and
C.
Lexow
, “
Modeling ammoniacal nitrogen fate in an alkaline soil: Degradation and leachate potentiality
,”
Environ. Model. Assess.
28
,
1023
1035
(
2023
).
27.
A.
Laval
,
H. T.
Hafnia
, and
S. G.
Vestas
, “
Ammonfuel an industrial view of ammonia as a marine fuel, august 2020
,”
Renewable Energy
8
,
32
59
(
2022
).
28.
IRENA,
Innovation outlook: Renewable ammonia
,”
2022
.
29.
H.
Wang
,
N.
Lin
, and
M.
Arzumanyan
, “
The market for low carbon intensity ammonia (LCIA)
,”
Gases
4
(
3
),
224
235
(
2024
).
30.
N.
Lin
,
H.
Wang
,
L.
Moscardelli
, and
M.
Shuster
, “
The dual role of low-carbon ammonia in climate-smart farming and energy transition
,”
J. Cleaner Prod.
469
,
143188
(
2024
).
31.
NREL,
H2a-lite: Hydrogen analysis lite production model
,”
2022
.
32.
N.
Lin
and
L.
Xu
, “
Navigating the implementation of tax credits for natural-gas-based low-carbon-intensity hydrogen projects
,”
Energies
17
,
1604
(
2024
).
33.
G. E.
Metcalf
, “
Carbon taxes in theory and practice
,”
Annu. Rev. Resour. Econ.
13
,
245
265
(
2021
).
34.
N.
Macaluso
,
S.
Tuladhar
,
J.
Woollacott
,
J. R.
Mcfarland
,
J.
Creason
, and
J.
Cole
, “
The impact of carbon taxation and revenue recycling on us industries
,”
Clim. Change Econ.
09
,
1840005
(
2018
).
35.
S.
Speck
, “
Carbon taxation: Two decades of experience and future prospects
,”
Carbon Manage.
4
,
171
183
(
2013
).
36.
X.
Chen
,
H.
Yang
,
X.
Wang
, and
T.-M.
Choi
, “
Optimal carbon tax design for achieving low carbon supply chains
,”
Ann. Oper. Res.
287,
1
28
(
2020
).
37.
N.
Wolf
,
P.
Escalona
,
M.
López-Campos
,
A.
Angulo
, and
J.
Weston
, “
On carbon tax effectiveness in inducing a clean technology transition: An evaluation based on optimal strategic capacity planning
,”
Sustainability
15
,
11663
(
2023
).
38.
E.
Martelli
,
M.
Freschini
, and
M.
Zatti
, “
Optimization of renewable energy subsidy and carbon tax for multi energy systems using bilevel programming
,”
Appl. Energy
267
,
115089
(
2020
).
39.
K.
Cleary
,
C.
Fischer
, and
K.
Palmer
, “
Tools and policies to promote decarbonization of the electricity sector
,” in
Handbook Electricity Markets
(
Edward Elgar Publishing
,
2021
), pp.
383–407
.
40.
J.
Gilmour
, “
45Q: Toward a stronger federal carbon capture tax credit
,”
Environ. Claims J.
35
,
235
253
(
2023
).
41.
B.
Tarufelli
,
B.
Snyder
, and
D.
Dismukes
, “
The potential impact of the US carbon capture and storage tax credit expansion on the economic feasibility of industrial carbon capture and storage
,”
Energy Policy
149
,
112064
(
2021
).
42.
E.
Grubert
and
F.
Sawyer
, “
US power sector carbon capture and storage under the inflation reduction act could be costly with limited or negative abatement potential
,”
Environ. Res.: Infrastruct. Sustainability
3
,
015008
(
2023
).
43.
F.
Cheng
,
H.
Luo
,
J. D.
Jenkins
, and
E. D.
Larson
, “
Impacts of the inflation reduction act on the economics of clean hydrogen and synthetic liquid fuels
,”
Environ. Sci. Technol.
57
,
15336
15347
(
2023
).
44.
N.
Lin
,
L.
Xu
, and
L. G.
Moscardelli
, “
Market-based asset valuation of hydrogen geological storage
,”
Int. J. Hydrogen Energy
49
,
114
129
(
2024
).
45.
H.
Zhang
,
L.
Wang
,
F.
Maréchal
,
U.
Desideri
et al, “
Techno-economic comparison of green ammonia production processes
,”
Appl. Energy
259
,
114135
(
2020
).
46.
D. R.
MacFarlane
,
P. V.
Cherepanov
,
J.
Choi
,
B. H.
Suryanto
,
R. Y.
Hodgetts
,
J. M.
Bakker
,
F. M. F.
Vallana
, and
A. N.
Simonov
, “
A roadmap to the ammonia economy
,”
Joule
4
,
1186
1205
(
2020
).
47.
J.
Boyce
,
R.
Sacchi
,
E.
Goetheer
, and
B.
Steubing
, “
A prospective life cycle assessment of global ammonia decarbonisation scenarios
,”
Heliyon
10
,
e27547
(
2024
).
48.
C.
Bataille
,
M.
Åhman
,
K.
Neuhoff
,
L. J.
Nilsson
,
M.
Fischedick
,
S.
Lechtenböhmer
,
B.
Solano-Rodriquez
,
A.
Denis-Ryan
,
S.
Stiebert
,
H.
Waisman
et al, “
A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris agreement
,”
J. Cleaner Prod.
187
,
960
973
(
2018
).
49.
National Research Council; Division on Earth and Life Studies; Division on Engineering and Physical Sciences; Board on Agriculture and Natural Resources; Board on Energy and Environmental Systems; Committee on Economic and Environmental Impacts of Increasing Biofuels Production,
Renewable Fuel Standard: Potential Economic and Environmental Effects of US Biofuel Policy”
(
National Academies Press
,
2012
).
50.
N. O.
Keohane
, “
Cap and trade, rehabilitated: Using tradable permits to control US greenhouse gases
,”
Rev. Environ. Econ. Policy
3
,
42
(
2009
).
51.
S.
Fuss
,
C.
Flachsland
,
N.
Koch
,
U.
Kornek
,
B.
Knopf
, and
O.
Edenhofer
, “
A framework for assessing the performance of cap-and-trade systems: Insights from the European Union emissions trading system
,”
Rev. Environ. Econ. Policy
12
,
220
(
2018
).
52.
G.
Grosjean
,
S.
Fuss
,
N.
Koch
,
B. L.
Bodirsky
,
S.
De Cara
, and
W.
Acworth
, “
Options to overcome the barriers to pricing European agricultural emissions
,”
Clim. Policy
18
,
151
169
(
2018
).
53.
S. W.
Salant
, “
What ails the european union's emissions trading system?
,”
J. Environ. Econ. Manage.
80
,
6
19
(
2016
).
54.
B. B.
Wittneben
, “
Exxon is right: Let us re-examine our choice for a cap-and-trade system over a carbon tax
,”
Energy Policy
37
,
2462
2464
(
2009
).
55.
J. A.
Basseches
, “
California cap-and-trade: History, design, effectiveness
,” in
Contesting Carbon
(
Routledge
,
Oxfordshire
,
2020
).
56.
G.
Bang
,
D. G.
Victor
, and
S.
Andresen
, “
California's cap-and-trade system: Diffusion and lessons
,”
Global Environ. Politics
17
,
12
30
(
2017
).
57.
B. D.
Yacobucci
, “
Analysis of renewable identification numbers (RINS) in the renewable fuel standard (RFS)
,”
Report No. R42824
,
2013
.
58.
M.
Stubbs
,
Environmental Quality Incentives Program (EQIP): Status and Issues
(
Congressional Research Service
,
Washington, DC
,
2010
).
59.
N. V.
Czap
,
H. J.
Czap
,
S.
Banerjee
, and
M. E.
Burbach
, “
Encouraging farmers' participation in the conservation stewardship program: A field experiment
,”
Ecol. Econ.
161
,
130
143
(
2019
).
60.
R.
Schnepf
, “
Renewable energy programs and the farm bill: Status and issues
,”
Report No. R41985
,
2010
.
You do not currently have access to this content.