Low carbon hydrogen production is the key to reducing its CO2 emissions. The electrolysis of water for hydrogen production links the CO2 emissions from the power system with those from hydrogen production. This article incorporates the power system into a hydrogen production Integrated MARKAL-EFOM system model and predicts the impact of hydrogen production methods and power structure on CO2 emissions from hydrogen production in China. The results show that: Under the business as usual scenario, the CO2 emissions from hydrogen production are projected to decline in 2045 and then rebound in 2050. It indicates that the current power structure is difficult to support the further reduction of hidden CO2 emissions in the future electrolysis of water for hydrogen production. Hydrogen production technologies optimization has a greater effect on CO2 emissions reduction in hydrogen production, its effect will gradually weaken, whereas the emission reduction effect of power structure optimization will gradually strengthen. The information presented in this paper could be helpful for researchers and policymakers to correctly consider the coupling relationship between power system and hydrogen system in the long-term energy transformation process.

1.
G. H.
Rau
,
H. D.
Willauer
, and
Z. J.
Ren
, “
The global potential for converting renewable electricity to negative CO2 emissions hydrogen
,”
Nat. Clim. Change
8
(
7
),
621
625
(
2018
).
2.
S.
Pye
,
O.
Broad
,
C.
Bataille
,
P.
Brockway
,
H. E.
Daly
,
R.
Freeman
,
A.
Gambhir
,
O.
Geden
,
F.
Rogan
,
S.
Sanghvi
,
J.
Tomei
,
I.
Vorushylo
, and
J.
Watson
, “
Modelling net-zero emissions energy systems requires a change in approach
,”
Clim. Policy
21
(
2
),
222
231
(
2021
).
3.
S.
van Renssen
, “
The hydrogen solution?
,”
Nat. Clim. Change
10
(
9
),
799
801
(
2020
).
4.
J.
Rissman
,
C.
Bataille
,
E.
Masanet
,
N.
Aden
,
W. R.
Morrow
,
N.
Zhou
,
N.
Elliott
,
R.
Dell
,
N.
Heeren
,
B.
Huckestein
,
J.
Cresko
,
S. A.
Miller
,
J.
Roy
,
P.
Fennell
,
B.
Cremmins
,
T.
Koch Blank
,
D.
Hone
,
E. D.
Williams
,
S.
de la Rue du Can
,
B.
Sisson
,
M.
Williams
,
J.
Katzenberger
,
D.
Burtraw
,
G.
Sethi
,
H.
Ping
,
D.
Danielson
,
H.
Lu
,
T.
Lorber
,
J.
Dinkel
, and
J.
Helseth
, “
Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070
,”
Appl. Energy
266
,
114848
(
2020
).
5.
F.
vom Scheidt
,
J. Y.
Qu
,
P.
Staudt
,
D. S.
Mallapragada
, and
C.
Weinhardt
, “
Integrating hydrogen in single-price electricity systems: The effects of spatial economic signals
,”
Energy Policy
161
,
112727
(
2022
).
6.
Q.
Hassan
,
S.
Algburi
,
M.
Jaszczur
,
A. K.
Al-Jiboory
,
T. J.
Al Musawi
,
B. M.
Ali
,
P.
Viktor
,
M.
Fodor
,
M.
Ahsan
,
H. M.
Salman
, and
A. Z.
Sameen
, “
Hydrogen role in energy transition: A comparative review
,”
Process Saf. Environ. Prot.
184
,
1069
1093
(
2024
).
7.
S.
Bellocchi
,
P.
Colbertaldo
,
M.
Manno
, and
B.
Nastasi
, “
Assessing the effectiveness of hydrogen pathways: A techno-economic optimisation within an integrated energy system
,”
Energy
263
,
126017
(
2023
).
8.
P.
Nikolaidis
and
A.
Poullikkas
, “
A comparative overview of hydrogen production processes
,”
Renewable Sustainable Energy Rev.
67
,
597
611
(
2017
).
9.
Z.
Li
,
W. D.
Zhang
,
R.
Zhang
, and
H. X.
Sun
, “
Development of renewable energy multi-energy complementary hydrogen energy system (A Case Study in China): A review
,”
Energy Explor. Exploit.
38
(
6
),
2099
2127
(
2020
).
10.
R. S.
El-Emam
and
H.
Özcan
, “
Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production
,”
J. Cleaner Prod.
220
,
593
609
(
2019
).
11.
J. C.
Koj
,
C.
Wulf
, and
P.
Zapp
, “
Environmental impacts of power-to-X systems - A review of technological and methodological choices in life cycle assessments
,”
Renewable Sustainable Energy Rev.
112
,
865
879
(
2019
).
12.
N.
Hajjaji
,
M. N.
Pons
,
V.
Renaudin
, and
A.
Houas
, “
Comparative life cycle assessment of eight alternatives for hydrogen production from renewable and fossil feedstock
,”
J. Cleaner Prod.
44
,
177
189
(
2013
).
13.
L.
Xu
,
S. F.
Zhang
,
M. S.
Yang
,
W.
Li
, and
J.
Xu
, “
Environmental effects of China's solar photovoltaic industry during 2011–2016: A life cycle assessment approach
,”
J. Cleaner Prod.
170
,
310
329
(
2018
).
14.
W.
Ajeeb
,
P.
Baptista
, and
R. C.
Neto
, “
Life cycle analysis of hydrogen production by different alkaline electrolyser technologies sourced with renewable energy
,”
Energy Convers. Manage.
316
,
118840
(
2024
).
15.
J. Z.
Ren
and
S.
Toniolo
, “
Life cycle sustainability decision-support framework for ranking of hydrogen production pathways under uncertainties: An interval multi-criteria decision making approach
,”
J. Cleaner Prod.
175
,
222
236
(
2018
).
16.
A.
Kumar
,
B.
Sah
,
A. R.
Singh
,
Y.
Deng
,
X. N.
He
,
P.
Kumar
, and
R. C.
Bansal
, “
A review of multi criteria decision making (MCDM) towards sustainable renewable energy development
,”
Renewable Sustainable Energy Rev.
69
,
596
609
(
2017
).
17.
J. Z.
Ren
,
S. Z.
Gao
,
S. Y.
Tan
,
L. C.
Dong
,
A.
Scipioni
, and
A.
Mazzi
, “
Role prioritization of hydrogen production technologies for promoting hydrogen economy in the current state of China
,”
Renewable Sustainable Energy Rev.
41
,
1217
1229
(
2015
).
18.
Y.
Chung
,
S.
Hong
, and
J.
Kim
, “
Which of the technologies for producing hydrogen is the most prospective in Korea?: Evaluating the competitive priority of those in near-, mid-, and long-term
,”
Energy Policy
65
,
115
125
(
2014
).
19.
R.
Fazeli
,
F. J.
Beck
, and
M.
Stocks
, “
Recognizing the role of uncertainties in the transition to renewable hydrogen
,”
Int. J. Hydrogen Energy
47
(
65
),
27896
27910
(
2022
).
20.
O.
Machhammer
,
A.
Bode
, and
W.
Hormuth
, “
Financial and ecological evaluation of hydrogen production processes on large scale
,”
Chem. Eng. Technol.
39
(
6
),
1185
1193
(
2016
).
21.
K.
Bareiss
,
C.
de la Rua
,
M.
Moeckl
, and
T.
Hamacher
, “
Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems
,”
Appl. Energy
237
,
862
872
(
2019
).
22.
J.
Yates
,
R.
Daiyan
,
R.
Patterson
,
R.
Egan
,
R.
Amal
,
A.
Ho-Baille
, and
N. L.
Chang
, “
Techno-economic analysis of hydrogen electrolysis from off-grid stand-alone photovoltaics incorporating uncertainty analysis
,”
Cell Rep. Phys. Sci.
1
(
10
),
100209
(
2020
).
23.
J.
Proost
, “
Critical assessment of the production scale required for fossil parity of green electrolytic hydrogen
,”
Int. J. Hydrogen Energy
45
(
35
),
17067
17075
(
2020
).
24.
K.
Karayel
,
N.
Javani
, and
I.
Dincer
, “
Green hydrogen production potential for Turkey with solar energy
,”
Int. J. Hydrogen Energy
47
(
45
),
19354
19364
(
2022
).
25.
H. M. U.
Ayub
,
S. Y.
Alnouri
,
M.
Stijepovic
,
V.
Stijepovic
, and
I. A.
Hussein
, “
A cost comparison study for hydrogen production between conventional and renewable methods
,”
Process Saf. Environ. Prot.
186
,
921
932
(
2024
).
26.
D.
Apostolou
and
P.
Enevoldsen
, “
The past, present and potential of hydrogen as a multifunctional storage application for wind power
,”
Renewable Sustainable Energy Rev.
112
,
917
929
(
2019
).
27.
A.
Kadri
,
H.
Marzougui
,
A.
Aouiti
, and
F.
Bacha
, “
Energy management and control strategy for a DFIG wind turbine/fuel cell hybrid system with super capacitor storage system
,”
Energy
192
,
116518
(
2020
).
28.
J.
Gawlick
and
T.
Hamacher
, “
Impact of coupling the electricity and hydrogen sector in a zero-emission European energy system in 2050
,”
Energy Policy
180
,
113646
(
2023
).
29.
B.
Shirizadeh
and
P.
Quirion
, “
Long-term optimization of the hydrogen-electricity nexus in France: Green, blue, or pink hydrogen?
,”
Energy Policy
181
,
113702
(
2023
).
30.
H. Y.
Lin
,
Q. W.
Wu
,
X. Y.
Chen
,
X.
Yang
,
X. Y.
Guo
,
J. J.
Lv
,
T. G.
Lu
,
S. J.
Song
, and
M.
McElroy
, “
Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China
,”
Renewable Energy
173
,
569
580
(
2021
).
31.
O.
Bamisile
,
J.
Li
,
Q.
Huang
,
S.
Obiora
,
P.
Ayambire
,
Z. Y.
Zhang
, and
W. H.
Hu
, “
Environmental impact of hydrogen production from Southwest China's hydro power water abandonment control
,”
Int. J. Hydrogen Energy
45
(
46
),
25587
25598
(
2020
).
32.
D.
Li
,
J.
Huang
,
D.
Yu
,
D.
Zhang
, and
X.
Zhang
, “
Development of low-carbon technologies in China's integrated hydrogen supply and power system
,”
Adv. Clim. Change Res.
(in press) (
2024
).
33.
M.
Hermesmann
and
T. E.
Müller
, “
Green, Turquoise, Blue, or Grey? Environmentally friendly hydrogen production in transforming energy systems
,”
Prog. Energy Combust. Sci.
90
,
100996
(
2022
).
34.
C.
Acar
,
A.
Beskese
, and
G. T.
Temur
, “
Sustainability analysis of different hydrogen production options using hesitant fuzzy AHP
,”
Int. J. Hydrogen Energy
43
(
39
),
18059
18076
(
2018
).
35.
International Energy Agency (IEA),
The future of hydrogen: Seizing today's opportunities
,”
2019
.
36.
K.
de Kleijne
,
H.
de Coninck
,
R.
van Zelm
,
M. A. J.
Huijbregts
, and
S. V.
Hanssen
, “
The many greenhouse gas footprints of green hydrogen
,”
Sustainable Energy Fuels
6
(
19
),
4383
4387
(
2022
).
37.
Z.
Wang
, “
Identifying green hydrogen produced by grid electricity
,”
Int. J. Hydrogen Energy
81
,
654
674
(
2024
).
38.
A.
Al-Qahtani
,
B.
Parkinson
,
K.
Hellgardt
,
N.
Shah
, and
G.
Guillen-Gosalbez
, “
Uncovering the true cost of hydrogen production routes using life cycle monetisation
,”
Appl. Energy
281
,
115958
(
2021
).
39.
H.
Liu
and
S.
Liu
, “
Life cycle energy consumption and GHG emissions of hydrogen production from underground coal gasification in comparison with surface coal gasification
,”
Int. J. Hydrogen Energy
46
(
14
),
9630
9643
(
2021
).
40.
H.
Lee
,
H.
Kim
,
D. G.
Choi
, and
Y.
Koo
, “
The impact of technology learning and spillovers between emission-intensive industries on climate policy performance based on an industrial energy system model
,”
Energy Strategy Rev.
43
,
100898
(
2022
).
41.
J.
Choi
,
D. G.
Choi
, and
S. Y.
Park
, “
Analysis of effects of the hydrogen supply chain on the Korean energy system
,”
Int. J. Hydrogen Energy
47
(
52
),
21908
21922
(
2022
).
42.
A.
Jain
,
S.
Yamujala
,
A.
Gaur
,
P.
Das
,
R.
Bhakar
, and
J.
Mathur
, “
Power sector decarbonization planning considering renewable resource variability and system operational constraints
,”
Appl. Energy
331
,
120404
(
2023
).
43.
S.
Selosse
and
O.
Ricci
, “
Achieving negative emissions with BECCS (bioenergy with carbon capture and storage) in the power sector: New insights from the TIAM-FR (TIMES Integrated Assessment Model France) model
,”
Energy
76
,
967
975
(
2014
).
44.
N.
Reyseliani
,
A.
Hidayatno
, and
W. W.
Purwanto
, “
Implication of the Paris agreement target on Indonesia electricity sector transition to 2050 using TIMES model
,”
Energy Policy
169
,
113184
(
2022
).
45.
P.
Fortes
,
S. G.
Simoes
,
F.
Amorim
,
G.
Siggini
,
V.
Sessa
,
Y.-M.
Saint-Drenan
,
S.
Carvalho
,
B.
Mujtaba
,
P.
Diogo
, and
E.
Assoumou
, “
How sensitive is a carbon-neutral power sector to climate change? The interplay between hydro, solar and wind for Portugal
,”
Energy
239
,
122106
(
2022
).
46.
N.
Reyseliani
,
Y. W.
Pratama
,
A.
Hidayatno
,
N.
Mac Dowell
, and
W. W.
Purwanto
, “
Power sector decarbonisation in developing and coal-producing countries: A case study of Indonesia
,”
J. Cleaner Prod.
454
,
142202
(
2024
).
47.
P.
Hugues
,
E.
Assoumou
, and
N.
Maizi
, “
Assessing GHG mitigation and associated cost of French biofuel sector: Insights from a TIMES model
,”
Energy
113
,
288
300
(
2016
).
48.
S.
Postic
,
S.
Selosse
, and
N.
Maizi
, “
Energy contribution to Latin American INDCs: Analyzing sub-regional trends with a TIMES model
,”
Energy Policy
101
,
170
184
(
2017
).
49.
L.
Lu
,
P. V.
Preckel
,
D.
Gotham
, and
A. L.
Liu
, “
An assessment of alternative carbon mitigation policies for achieving the emissions reduction of the clean power plan: Case study for the state of Indiana
,”
Energy Policy
96
,
661
672
(
2016
).
50.
M.
Aitken
,
D.
Loughlin
,
R.
Dodder
, and
W.
Yelverton
, “
Economic and environmental evaluation of coal-and-biomass-to-liquids-and-electricity plants equipped with carbon capture and storage
,”
Clean Technol. Environ. Policy
18
,
573
581
(
2016
).
51.
N. A.
Pambudi
,
A.
Chapman
,
A.
Sarifudin
,
D. K.
Ulfa
, and
I. R.
Nanda
, “
Mitigating carbon emissions: A comprehensive analysis of transitioning to hydrogen-powered plants in Japan's energy landscape post-Fukushima
,”
Energy Eng.
121
(
5
),
1143
1159
(
2024
).
52.
R.
Béres
,
W.
Nijs
,
A.
Boldrini
, and
M.
van den Broek
, “
Will hydrogen and synthetic fuels energize our future? Their role in Europe's climate-neutral energy system and power system dynamics
,”
Appl. Energy
375
,
124053
(
2024
).
53.
H.
Blanco
,
J.
Leaver
,
P. E.
Dodds
,
R.
Dickinson
,
D.
García-Gusano
,
D.
Iribarren
,
A.
Lind
,
C.
Wang
,
J.
Danebergs
, and
M.
Baumann
, “
A taxonomy of models for investigating hydrogen energy systems
,”
Renewable Sustainable Energy Rev.
167
,
112698
(
2022
).
54.
S.
Evangelopoulou
,
A.
De Vita
,
G.
Zazias
, and
P.
Capros
, “
Energy system modelling of carbon-neutral hydrogen as an enabler of sectoral integration within a decarbonization pathway
,” Energies
12
,
2551
(
2019
).
55.
International Energy Agency(IEA),
The future of hydrogen: ENERGY
,”
2019
.
56.
National Bureau of Statistics of China,
“China Electric Power Statistical Yearbook
,”
2020
.
57.
International Energy Agency(IEA),
World Energy Outlook(2020)
,”
2020
.
58.
X.
Zhang
, “
Scenarios analysis of low-carbon energy transition under carbon neutral goal in 2060
,”
2020
.
59.
China Hydrogen Alliance,
White paper on China's hydrogen energy and fuel cell industry
,”
2020
.
60.
J.
Portugal-Pereira
,
A. C.
Koberle
,
R.
Soria
,
A. F.
Lucena
,
A.
Szklo
, and
R.
Schaeffer
, “
Overlooked impacts of electricity expansion optimisation modelling: The life cycle side of the story
,”
Energy
115
,
1424
1435
(
2016
).
61.
R.
Miranda
,
S.
Simoes
,
A.
Szklo
, and
R.
Schaeffer
, “
Adding detailed transmission constraints to a long-term integrated assessment model - A case study for Brazil using the TIMES model
,”
Energy
167
,
791
803
(
2019
).
62.
IRENA,
Hydrogen: A renewable energy perspective
,”
2019
.
63.
IEA,
The Future of Hydrogen: ENERGY
,”
2019
.
64.
P.
Bolat
and
C.
Thiel
, “
Hydrogen supply chain architecture for bottom-up energy systems models. Part 1: Developing pathways
,”
Int. J. Hydrogen Energy
39
(
17
),
8881
8897
(
2014
).
65.
P.
Bolat
and
C.
Thiel
, “
Hydrogen supply chain architecture for bottom-up energy systems models. Part 2: Techno-economic inputs for hydrogen production pathways
,”
Int. J. Hydrogen Energy
39
(
22
),
11827
(
2014
).
66.
T.
Longden
,
F. J.
Beck
,
F.
Jotzo
,
R.
Andrews
, and
M.
Prasad
, “
Clean' hydrogen?-Comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen
,”
Appl. Energy
306
,
118145
(
2022
).
67.
H.
Xie
,
S.
Ren
, and
Y.
Xie
, “
Development opportunities of the coal industry towards the goal of carbon neutrality
,”
J. China Coal Soc.
7
(
46
),
2197
2211
(
2021
).
68.
S.
Liu
,
Z.
Lin
,
Y.
Jiang
,
T.
Zhang
,
L.
Yang
,
W.
Tan
, and
F.
Lu
, “
Modelling and discussion on emission reduction transformation path of China's electric power industry under “double carbon“ goal
,”
Heliyon
8
(
9
),
e10497
(
2022
).
69.
W.
Liu
,
Y.
Wan
,
Y.
Xiong
, and
J.
Liu
, “
Outlook of low carbon and clean hydrogen in China under the goal of “carbon peak and neutrality
,”
Energy Storage Sci. Technol.
11
(
2
),
635
642
(
2022
).
70.
Z.
Zhen
,
X.
Ou
,
Y.
Wang
, and
S.
Zhou
, “
Assessing transition pathways of hydrogen production in China with a probabilistic framework
,”
Environ. Sci. Technol.
58
(
30
),
13263
13272
(
2024
).
71.
G.
Pan
,
W.
Gu
,
Q.
Hu
,
J.
Wang
,
F.
Teng
, and
G.
Strbac
, “
Cost and low-carbon competitiveness of electrolytic hydrogen in China
,”
Energy Environ. Sci.
14
(
9
),
4868
4881
(
2021
).
You do not currently have access to this content.