A flow-boiling battery temperature management system (BTMS) is considered a valid way to achieve heat dissipation of high-energy-density batteries at high charging and discharging rates due to its strong heat-transfer performance. A microchannel cooling plate with trapezoidal fins (TFMP) to introduce secondary flow between adjacent main channels is proposed in this study, as part of a flow-boiling BTMS to cool rectangular lithium-ion batteries. The results show that, as the inlet Reynolds of the coolant number inside the cooling plate increases from 25 to 825, the heat transfer mode of the coolant becomes from boiling heat transfer to single-phase convective heat transfer. Meanwhile, in the boiling heat-transfer mode, compared with traditional straight channels, as the long edge length of the trapezoidal fins, the width of the secondary channel, and the bottom angle of the fins increase, the temperature characteristics of the batteries, and the heat transfer performance and overall performance of the cooling plate are improved, while the flow resistance and entropy production of the cooling plate are also smaller. At a 3C discharge rate, when the Reynolds number is 450, the coolant is boiling heat-transfer mode, mainly, and the BTMS has the highest comprehensive performance. At this time, compared to traditional straight channel cooling plate, the heat transfer performance and the performance evaluation criterion of the TFMP are enhanced by 1.89 and 1.31 times, respectively, while the irreversible loss is only 64% of it, and the maximum temperature of the batteries (Tmax) in the BTMS is 34.03 °C, their maximum temperature difference (ΔTmax) is 2.51 °C, which is 2.55 and 1.37 °C lower than the BTMS with traditional straight channel cooling plate, respectively.

1.
Z.
Yao
,
J.
Xie
,
T.
Fu
,
Y.
Luo
, and
X.
Yang
, “
One-pot preparation of phase change material employing nano-scaled resorcinol-furfural frameworks
,”
Chem. Eng. J.
484
,
149553
(
2024
).
2.
X.
Yang
,
R.
Huang
,
Z.
Yao
, and
G.
Zhang
, “
Modular assembly strategy to construct lightweight thermal management system by developing high-stable phase change material units
,”
Chem. Eng. Sci.
299
,
120529
(
2024
).
3.
W.
Tang
,
H.
Ding
,
X.
Xu
,
J.
Fu
,
L.
Liu
,
W.
Wei
,
Y.
Xiao
, and
H.
Huang
, “
Research on battery liquid-cooled system based on the parallel connection of cold plates
,”
J. Renewable Sustainable Energy
12
(
4
),
045701
(
2020
).
4.
X. W.
Lin
,
Y. B.
Li
,
W. T.
Wu
,
Z. F.
Zhou
, and
B.
Chen
, “
Advances on two-phase heat transfer for lithium-ion battery thermal management
,”
Renewable Sustainable Energy Rev.
189
,
114052
(
2024
).
5.
J.
Luo
,
H.
Gu
,
S.
Wang
,
H.
Wang
, and
D.
Zou
, “
A coupled power battery cooling system based on phase change material and its influencing factors
,”
Appl. Energy
326
,
119917
(
2022
).
6.
Y.
Li
,
M.
Bai
,
Z.
Zhou
,
J.
Lv
,
C.
Hu
,
L.
Gao
,
C.
Peng
,
Y.
Li
,
Y.
Li
, and
Y.
Song
, “
Experimental study of liquid immersion cooling for different cylindrical lithium-ion batteries under rapid charging conditions
,”
Therm. Sci. Eng. Prog.
37
,
101569
(
2023
).
7.
Y.
Li
,
Z.
Zhou
,
J.
Zhao
,
L.
Hao
,
M.
Bai
,
Y.
Li
,
X.
Liu
,
Y.
Li
, and
Y.
Song
, “
Three-dimensional thermal simulations of 18650 lithium-ion batteries cooled by different schemes under high rate discharging and external shorting conditions
,”
Energies
14
(
21
),
6986
(
2021
).
8.
M.
Al-Zareer
,
I.
Dincer
, and
M. A.
Rosen
, “
A novel phase change based cooling system for prismatic lithium ion batteries
,”
Int. J. Refrig.
86
,
203
217
(
2018
).
9.
Y.
Li
,
M.
Bai
,
Z.
Zhou
,
W. T.
Wu
,
J.
Lv
,
L.
Gao
,
H.
Huang
,
Y.
Li
,
Y.
Li
, and
Y.
Song
, “
Experimental investigations of liquid immersion cooling for 18650 lithium-ion battery pack under fast charging conditions
,”
Appl. Therm. Eng.
227
,
120287
(
2023
).
10.
Y. F.
Wang
and
J. T.
Wu
, “
Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles
,”
Energy Convers. Manage.
207
,
112569
(
2020
).
11.
L. H.
Saw
,
H. M.
Poon
,
H. S.
Thiam
,
Z.
Cai
,
W. T.
Chong
,
N. A.
Pambudi
, and
Y. J.
King
, “
Novel thermal management system using mist cooling for lithium-ion battery packs
,”
Appl. Energy
223
,
146
158
(
2018
).
12.
R.
Zhao
,
J.
Gu
, and
J.
Liu
, “
An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries
,”
J. Power Sources
273
,
1089
1097
(
2015
).
13.
Y.
Yang
,
L.
Yang
,
X.
Du
, and
Y.
Yang
, “
Pre-cooling of air by water spray evaporation to improve thermal performance of lithium battery pack
,”
Appl. Therm. Eng.
163
,
114401
(
2019
).
14.
S.
Lei
,
Y.
Shi
, and
G.
Chen
, “
A lithium-ion battery-thermal-management design based on phase-change-material thermal storage and spray cooling
,”
Appl. Therm. Eng.
168
,
114792
(
2020
).
15.
R.
Ataur
,
M. N. A.
Hawlader
, and
H.
Khalid
, “
Two-phase evaporative battery thermal management technology for EVs/HEVs
,”
Int. J. Automot. Technol.
18
,
875
(
2017
).
16.
L.
Wei
,
L.
Jia
,
Z.
An
, and
C.
Dang
, “
Experimental study on thermal management of cylindrical li-ion battery with flexible microchannel plates
,”
J. Therm. Sci.
29
(
4
),
1001
1009
(
2020
).
17.
B.
Lin
,
J.
Cen
, and
F.
Jiang
, “
Thermal performance of a cylindrical lithium-ion battery module cooled by two-phase refrigerant circulation
,”
Energies
14
(
23
),
8094
(
2021
).
18.
H.
Sadique
,
Q.
Murtaza
, and
Samsher
, “
Heat transfer augmentation in microchannel heat sink using secondary flows: A review
,”
Int. J. Heat Mass Transfer
194
,
123063
(
2022
).
19.
B.
Qian
,
H.
Fan
,
G.
Liu
,
J.
Zhang
, and
P.
Li
, “
Self-supporting microchannel liquid-cooled plate for T/R modules based on additive manufacturing: Study on its pass design, formation process and boiling heat transfer performance
,”
Metals
11
(
11
),
1731
(
2021
).
20.
T.
Alam
,
W.
Li
,
W.
Chang
,
F.
Yang
,
J.
Khan
, and
C.
Li
, “
A comparative study of flow boiling HFE-7100 in silicon nanowire and plainwall microchannels
,”
Int. J. Heat Mass Transfer
124
,
829
840
(
2018
).
21.
G. H.
Seo
,
U.
Jeong
,
H. H.
Son
,
D.
Shin
, and
S. J.
Kim
, “
Effects of layer-by-layer assembled PEI/MWCNT surfaces on enhanced pool boiling critical heat flux
,”
Int. J. Heat Mass Transfer
109
,
564
576
(
2017
).
22.
D.
Il Shim
,
G.
Choi
,
N.
Lee
,
T.
Kim
,
B. S.
Kim
, and
H. H.
Cho
, “
Enhancement of pool boiling heat transfer using aligned silicon nanowire arrays
,”
ACS Appl. Mater. Interfaces
9
(
20
),
17595
17602
(
2017
).
23.
A.
Suszko
and
M. S.
El-Genk
, “
Bubbles transient growth in saturation boiling of PF-5060 dielectric liquid on dimpled Cu surfaces
,”
J. Therm. Sci. Eng. Appl.
8
(
2
),
021016
(
2016
).
24.
H.
O'Hanley
,
C.
Coyle
,
J.
Buongiorno
,
T.
McKrell
,
L.-W.
Hu
,
M.
Rubner
, and
R.
Cohen
, “
Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux
,”
Appl. Phys. Lett.
103
(
2
),
024102
(
2013
).
25.
Y. F.
Li
,
G. D.
Xia
,
D. D.
Ma
,
J. L.
Yang
, and
W.
Li
, “
Experimental investigation of flow boiling characteristics in microchannel with triangular cavities and rectangular fins
,”
Int. J. Heat Mass Transfer
148
,
119036
(
2020
).
26.
T.
Li
,
X.
Luo
,
B.
He
,
L.
Wang
,
J.
Zhang
, and
Q.
Liu
, “
Flow boiling heat transfer enhancement in vertical minichannel heat sink with non-uniform microcavity arrays under electric field
,”
Exp. Therm. Fluid Sci.
149
,
110997
(
2023
).
27.
O. A.
Odumosu
,
H.
Xu
,
T.
Wang
, and
Z.
Che
, “
Growth of elongated vapor bubbles during flow boiling heat transfer in wavy microchannels
,”
Appl. Therm. Eng.
223
,
119987
(
2023
).
28.
X.
Ma
,
G.
Song
,
H.
Chen
,
Y.
Zhang
,
N.
Xu
, and
J.
Wei
, “
Experimental investigation and correlation analysis of pool boiling heat transfer on the array surfaces with micro-fins using FC-72 for the electronic thermal management
,”
Appl. Therm. Eng.
236
(
28
),
121755
(
2024
).
29.
I.
Pranoto
,
M. A.
Rahman
,
C. D.
Wicaksana
,
A. E.
Wibisono
,
Fauzun
, and
A.
Widyatama
, “
Flow boiling heat transfer performance and boiling phenomena on various straight fin configurations
,”
Fluids
8
(
3
),
102
(
2023
).
30.
G.
Chen
,
M.
Jia
,
S.
Zhang
,
Y.
Tang
, and
Z.
Wan
, “
Pool boiling enhancement of novel interconnected microchannels with reentrant cavities for high-power electronics cooling
,”
Int. J. Heat Mass Transfer
156
,
119836
(
2020
).
31.
J.
Ma
,
W.
Li
,
D.
Tang
, and
C.
Li
, “
Effects of micro-slots in fully interconnected microchannels on flow boiling heat transfer
,”
Appl. Therm. Eng.
231
,
120703
(
2023
).
32.
S. S.
Thakur
,
R.
Akula
, and
L.
Kumar
, “
An effective and lightweight battery thermal management system with incremental contact area: A numerical study
,”
Appl. Therm. Eng.
242
,
122555
(
2024
).
33.
H.
Wang
,
T.
Tao
,
J.
Xu
,
X.
Mei
,
X.
Liu
, and
P.
Gou
, “
Cooling capacity of a novel modular liquid-cooled battery thermal management system for cylindrical lithium ion batteries
,”
Appl. Therm. Eng.
178
,
115591
(
2020
).
34.
J.
Wang
,
S.
Lu
,
Y.
Wang
,
C.
Li
, and
K.
Wang
, “
Effect analysis on thermal behavior enhancement of lithium–ion battery pack with different cooling structures
,”
J. Energy Storage
32
,
101800
(
2020
).
35.
W.
Jiang
,
J.
Zhao
, and
Z.
Rao
, “
Heat transfer performance enhancement of liquid cold plate based on mini V-shaped rib for battery thermal management
,”
Appl. Therm. Eng.
189
,
116729
(
2021
).
36.
Q.
Zhu
,
Y.
Cui
,
J.
Zeng
,
S.
Zhang
,
Z.
Wang
, and
T.
Zhao
, “
Local hydrothermal characteristics and temperature uniformity improvement of microchannel heat sink with non-uniformly distributed grooves
,”
Case Stud. Therm. Eng.
47
,
103113
(
2023
).
37.
M. W.
Uddin
and
N. S.
Sifat
, “
Comparative study on hydraulic and thermal characteristics of minichannel heat sink with different secondary channels in parallel and counter flow directions
,”
Int. J. Thermofluids
17
,
100296
(
2023
).
38.
S.
Sarvar-Ardeh
,
R.
Rafee
, and
S.
Rashidi
, “
Enhancing the performance of liquid-based battery thermal management system by porous substrate minichannel
,”
J. Energy Storage
71
,
108142
(
2023
).
39.
H.
Yang
,
Z.
Wang
,
M.
Li
,
F.
Ren
, and
Y.
Feng
, “
A manifold channel liquid cooling system with low-cost and high temperature uniformity for lithium-ion battery pack thermal management
,”
Therm. Sci. Eng. Prog.
41
,
101857
(
2023
).
40.
T.
Dong
,
Z.
Yang
,
Q.
Bi
, and
Y.
Zhang
, “
Freon R141b flow boiling in silicon microchannel heat sinks: Experimental investigation
,”
Heat Mass Transfer
44
(
3
),
315
324
(
2007
).
41.
E. W.
Lemmon
,
M. L.
Huber
, and
M. O.
McLinden
, “
Reference fluid thermodynamic and transport properties-REFPROP
,” in
NIST Standard Reference Database
(
NIST
,
Gaithersburg
,
2013
), Vol.
23
, Version 9.1.
42.
W.
Shao
,
B.
Zhao
,
W.
Zhang
,
Y.
Feng
,
W.
Mao
,
G.
Ai
, and
K.
Dai
, “
Study on the reversible and irreversible heat generation of the lithium-ion battery with LiFePO_4 cathode
,”
Fire Technol.
59
(
2
),
289
303
(
2023
).
43.
Z.
Chen
,
Y.
Qin
,
Z.
Dong
,
J.
Zheng
, and
Y.
Liu
, “
Numerical study on the heat generation and thermal control of lithium-ion battery
,”
Appl. Therm. Eng.
221
,
119852
(
2023
).
44.
M. S.
Wu
,
K. H.
Liu
,
Y. Y.
Wang
, and
C. C.
Wan
, “
Heat dissipation design for lithium-ion batteries
,”
J. Power Sources
109
(
1
),
160
166
(
2002
).
45.
Z.
Tang
,
Y.
Xiang
,
M.
Li
,
J.
Cheng
, and
Q.
Wang
, “
Multi-objective optimization of liquid-cooled battery thermal management system with biomimetic fractal channels using artificial neural networks and response surface methodology
,”
Int. J. Therm. Sci.
206
,
109304
(
2024
).
46.
J.
Franců
and
J.
Mikyška
, “
An alternative model of multicomponent diffusion based on a combination of the Maxwell-Stefan theory and continuum mechanics
,”
J. Comput. Phys.
400
,
108962
(
2020
).
47.
S.
Vasudevan
,
S.
Etemad
,
L.
Davidson
, and
M.
Bovo
, “
Comparative analysis of single and multiphase numerical frameworks for subcooled boiling flow in an internal combustion engine coolant jacket
,”
Appl. Therm. Eng.
219
(
PA
),
119435
(
2023
).
48.
X.
Gu
,
J.
Wen
,
X.
Zhang
,
C.
Wang
, and
S.
Wang
, “
Effect of tube shape on the condensation patterns of R1234ze(E) in horizontal mini-channels
,”
Int. J. Heat Mass Transfer
131
,
121
139
(
2019
).
49.
V.
Taivassalo
and
S.
Kallio
,
On the Mixture Model for Multiphase Flow
(
VTT Publications
,
1996
), Vol.
288
, pp.
3
67
.
50.
H. I.
Mohammed
,
D.
Giddings
, and
G. S.
Walker
, “
CFD multiphase modelling of the acetone condensation and evaporation process in a horizontal circular tube
,”
Int. J. Heat Mass Transfer
134
,
1159
1170
(
2019
).
51.
W. H.
Lee
,
Computational Methods for Two-Phase Flow and Particle Transport (with CD-ROM)
(
World Scientific
,
2013
).
52.
T.
Jatau
and
T.
Bello-Ochende
, “
Minimization of entropy generation in U-bend tube heat exchanger during flow boiling of R134a
,”
Int. J. Therm. Sci.
185
,
108032
(
2023
).
53.
S.
Abadi
,
W. A.
Davies
,
P.
Hrnjak
, and
J. P.
Meyer
, “
Numerical study of steam condensation inside a long inclined flattened channel
,”
Int. J. Heat Mass Transfer
134
,
450
467
(
2019
).
54.
ANSYS Inc.
,
ANSYS Fluent Theory Guide
(
ANSYS Inc.
,
USA
,
2013
), Vol.
15317
, p.
814
.
55.
S.
Basu
,
K. S.
Hariharan
,
S. M.
Kolake
,
T.
Song
,
D. K.
Sohn
, and
T.
Yeo
, “
Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system
,”
Appl. Energy
181
,
1
13
(
2016
).
56.
C.
Zhu
,
X.
Li
,
L.
Song
, and
L.
Xiang
, “
Development of a theoretically based thermal model for lithium ion battery pack
,”
J. Power Sources
223
,
155
164
(
2013
).
57.
A.
Alizadehdakhel
,
M.
Rahimi
, and
A. A.
Alsairafi
, “
CFD modeling of flow and heat transfer in a thermosyphon
,”
Int. Commun. Heat Mass Transfer
37
(
3
),
312
318
(
2010
).
58.
S.
Lin
,
P. A.
Kew
, and
K.
Cornwell
, “
Two-phase heat transfer to a refrigerant in a 1 mm diameter tube
,”
Int. J. Refrig.
24
(
1
),
51
56
(
2001
).
59.
S.
Wang
,
X.
Bi
, and
S.
Wang
, “
Boiling heat transfer in small rectangular channels at low Reynolds number and mass flux
,”
Exp. Therm. Fluid Sci.
77
,
234
245
(
2016
).
60.
M.
Law
and
P. S.
Lee
, “
Effects of varying secondary channel widths on flow boiling heat transfer and pressure characteristics in oblique-finned microchannels
,”
Int. J. Heat Mass Transfer
101
,
313
326
(
2016
).
61.
V. M.
Goud
,
G.
Satyanarayana
,
J.
Ramesh
,
G. A.
Pathanjali
, and
D. R.
Sudhakar
, “
An experimental investigation and hybrid neural network modelling of thermal management of lithium-ion batteries using a non-paraffinic organic phase change material, myristyl alcohol
,”
J. Energy Storage
72
,
108395
(
2023
).
62.
J.
Xie
,
G.
Zhang
, and
X.
Yang
, “
Thermal performance analysis of battery thermal management system utilizing bionic liquid cooling plates with differentiated velocity distribution strategy
,”
Appl. Therm. Eng.
249
,
123351
(
2024
).
63.
S. M.
Kim
and
I.
Mudawar
, “
Review of databases and predictive methods for heat transfer in condensing and boiling mini/micro-channel flows
,”
Int. J. Heat Mass Transfer
77
,
627
652
(
2014
).
64.
H. Y.
Wu
and
P.
Cheng
, “
Boiling instability in parallel silicon microchannels at different heat flux
,”
Int. J. Heat Mass Transfer
47
(
17–18
),
3631
3641
(
2004
).
65.
M.
Amaranatha Raju
,
T. P.
Ashok Babu
, and
C.
Ranganayakulu
, “
Investigation of flow boiling heat transfer and pressure drop of R134a in a rectangular channel with wavy fin
,”
Int. J. Therm. Sci.
147
,
106055
(
2020
).
66.
N.
Raja Kuppusamy
,
R.
Saidur
,
N. N. N.
Ghazali
, and
H. A.
Mohammed
, “
Numerical study of thermal enhancement in micro channel heat sink with secondary flow
,”
Int. J. Heat Mass Transfer
78
,
216
223
(
2014
).
67.
Z.
Li
,
D.
Lu
,
X.
Wang
, and
Q.
Cao
, “
Analysis on the flow and heat transfer performance of SCO2 in airfoil channels with different structural parameters
,”
Int. J. Heat Mass Transfer
219
,
124846
(
2024
).
68.
H.
Tuo
and
P.
Hrnjak
, “
Effect of the header pressure drop induced flow maldistribution on the microchannel evaporator performance
,”
Int. J. Refrig.
36
(
8
),
2176
2186
(
2013
).
69.
M.
Law
and
P. S.
Lee
, “
A comparative study of experimental flow boiling heat transfer and pressure characteristics in straight- and oblique-finned microchannels
,”
Int. J. Heat Mass Transfer
85
,
797
810
(
2015
).
70.
J.
Mathew
,
P.-S.
Lee
,
T.
Wu
, and
C. R.
Yap
, “
Comparative study of the flow boiling performance of the hybrid microchannel-microgap heat sink with conventional straight microchannel and microgap heat sinks
,”
Int. J. Heat Mass Transfer
156
,
119812
(
2020
).
71.
H. M.
Metwally
and
R. M.
Manglik
, “
Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels
,”
Int. J. Heat Mass Transfer
47
(
10–11
),
2283
2292
(
2004
).
72.
Z.
Wang
,
S.
Zhang
,
X.
Xia
,
L.
Luo
,
Z.
Xu
,
D.
Peng
, and
B.
Ren
, “
Experimental investigation on flow boiling heat transfer characteristics of R245fa/oil mixture in horizontal smooth tube
,”
Int. J. Multiphase Flow
172
,
104708
(
2024
).
73.
M.
Salman
,
R.
Prabakaran
,
D.
Lee
, and
S. C.
Kim
, “
Comparative analysis of flow boiling characteristics of an R290/R1270 mixture and R290 in a plate heat exchanger with offset strip fins
,”
Appl. Therm. Eng.
227
,
120448
(
2023
).
74.
D.
Wang
,
D.
Wang
,
F.
Hong
,
C.
Zhang
, and
J.
Xu
, “
Improved flow boiling performance and temperature uniformity in counter-flow interconnected microchannel heat sink
,”
Appl. Therm. Eng.
241
,
122370
(
2024
).
75.
Z.
Wang
,
M.
Li
,
F.
Ren
,
B.
Ma
,
H.
Yang
, and
Y.
Zhu
, “
Sobol sensitivity analysis and multi-objective optimization of manifold microchannel heat sink considering entropy generation minimization
,”
Int. J. Heat Mass Transf.
208
,
124046
(
2023
).
76.
J. H.
Lim
and
M.
Park
, “
Effect of hypervapotron fin angle on subcooled flow boiling heat transfer performance under one-side high-heat load condition
,”
Fusion Sci. Technol.
78
(
5
),
395
413
(
2022
).
You do not currently have access to this content.