In recent times, there has been increasing interest in renewable power generation and electric vehicles within the domain of smart grids. The integration of electric vehicles with hybrid systems presents several critical challenges, including increased power loss, power quality issues, and voltage deviations. To tackle these challenges, researchers have proposed various techniques. Effective management of energy systems is essential for maximizing the benefits of integrating a hybrid system with a microgrid at an electric vehicle charging station. This research specifically aims to optimize the location and sizing of such a hybrid system within the microgrid. Additionally, an improved binary quantum-based Elk Herd optimizer approach is proposed. This approach addresses for optimally managing renewable energy sources and load uncertainty. The proposed system also considers the stochastic nature of electric vehicles and operational restrictions, encompassing diverse charging control modes. The proposed technique performance is implemented in MATLAB platform and compared against existing approaches. The analysis demonstrates the effectiveness in achieving optimal location and sizing for a hybrid system with an electric vehicle charging station. Additionally, the proposed approach contributes to minimizing power loss, electricity costs, and average waiting time. Furthermore, the proposed approach reduces computing time, net present cost, and emissions are 12.5 s, 1.1×106 dollar, 2.21×108 g year−1, respectively.

1.
S.
Selvakumaran
and
K.
Baskaran
, “A hybrid RBFNN-SPOA technique for multi-source EV power system with single-switch DC-DC converter,”
IETE J. Res.
1
12
(
2024
).
2.
W. S.
Tounsi Fokui
,
M. J.
Saulo
, and
L.
Ngoo
, “
Optimal placement of electric vehicle charging stations in a distribution network with randomly distributed rooftop photovoltaic systems
,”
IEEE Access
9
,
132397
132411
(
2021
).
3.
V.
Suresh
,
N.
Bazmohammadi
,
P.
Janik
,
J. M.
Guerrero
,
D.
Kaczorowska
,
J.
Rezmer
,
M.
Jasinski
, and
Z.
Leonowicz
, “
Optimal location of an electrical vehicle charging station in a local microgrid using an embedded hybrid optimizer
,”
Int. J. Electr. Power Energy Syst.
131
,
106979
(
2021
).
4.
S.
Selvakumaran
and
K.
Baskaran
, “
A hybrid approach for PV based grid tied intelligent controlled water pump system
,”
Int. J. Adapt. Control Sig. Proces.
38
(
4
),
1281
1308
(
2024
).
5.
A.
Fathollahi
,
S. Y.
Derakhshandeh
,
A.
Ghiasian
, and
M. A.
Masoum
, “
Optimal siting and sizing of wireless EV charging infrastructures considering traffic network and power distribution system
,”
IEEE Access
10
,
117105
117117
(
2022
).
6.
P.
Mirhoseini
and
N.
Ghaffarzadeh
, “
Economic battery sizing and power dispatch in a grid-connected charging station using convex method
,”
J. Energy Storage
31
,
101651
(
2020
).
7.
R. K.
Rojin
and
M. M.
Linda
, “
Hybrid microgrid based on PID controller with the modified particle swarm optimization
,”
Intell. Autom. Soft Comput.
33
(
1
),
246
258
(
2022
).
8.
D.
Ji
,
M.
Lv
,
J.
Yang
, and
W.
Yi
, “
Optimizing the locations and sizes of solar assisted electric vehicle charging stations in an urban area
,”
IEEE Access
8
,
112772
112782
(
2020
).
9.
G. C.
Thilaka
and
M. M.
Linda
, “
Harmonics mitigation using MMC Based UPFC and particle swarm optimization
,”
Intell. Autom. Soft Comput.
35
(
3
),
3430
3445
(
2023
).
10.
M. J.
Mayer
,
A.
Szilágyi
, and
G.
Gróf
, “
Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm
,”
Appl. Energy
269
,
115058
(
2020
).
11.
E. J.
Mol
and
M. M.
Linda
, “
Integration of wind and PV systems using genetic-assisted artificial neural network
,”
Intelligent Autom. Soft Comput.
35
(
2
),
1471
1489
(
2023
).
12.
S.
Poonam
,
P.
Manjaree
, and
S.
Laxmi
, “
Comparison of traditional and swarm intelligence based techniques for optimization of hybrid renewable energy system
,”
Renewable Energy Focus.
35
,
1
9
(
2020
).
13.
S.
Sengar
and
X.
Liu
, “
Optimal electrical load forecasting for hybrid renewable resources through a hybrid memetic cuckoo search approach
,”
Soft Comput.
24
,
13099
13114
(
2020
).
14.
N.
Robuschi
,
C.
Zeile
,
S.
Sager
, and
F.
Braghin
, “
Multiphase mixed-integer nonlinear optimal control of hybrid electric vehicles
,”
Automatica.
123
,
109325
(
2021
).
15.
A.
Al-Othman
,
M.
Tawalbeh
,
R.
Martis
,
S.
Dhou
,
M.
Orhan
,
M.
Qasim
, and
A.
Ghani Olabi
, “
Artificial Intelligence and numerical models in hybrid renewable energy systems with fuel cells: Advances and prospects
,”
Energy Convers. Manage.
253
,
115154
(
2022
).
16.
J.
Jaya
and
M. M.
Linda
, “
A new-fangled approach for optimal placement of facts controllers in a hybridized system
,”
Electric Power Compon. Syst.,
1
17
(
2024
).
17.
G.
Gadge
and
Y.
Pahariya
, “
Grey wolf optimization based energy management strategy for hybrid electrical vehicles
,”
Int. J. Electr. Electron. Res.
10
,
772
778
(
2022
).
18.
S. I.
Taheri
,
M. B. C.
Salles
, and
I. A.
Khan
, “
Supporting distributed energy resources with optimal placement and sizing of voltage regulators on the distribution system by an improved teaching‐learning‐based optimization algorithm
,”
Int. Trans. Electr. Energy Syst.
31
,
e12974
(
2021
).
19.
A.
Taneja
,
N.
Saluja
,
N.
Taneja
,
A.
Alqahtani
,
M. A.
Elmagzoub
,
A.
Shaikh
, and
D.
Koundal
, “
Power optimization model for energy sustainability in 6G wireless networks
,”
Sustainability
14
,
7310
(
2022
).
20.
M.
Kim
,
S.
Kasi
,
P. A.
Lott
,
D.
Venturelli
,
J.
Kaewell
, and
K.
Jamieson
, “
Heuristic quantum optimization for 6G wireless communications
,”
IEEE Network
35
,
8
15
(
2021
).
21.
N. K.
Krishnamurthy
,
J. N.
Sabhahit
,
V. K.
Jadoun
,
D. N.
Gaonkar
,
A.
Shrivastava
,
V. S.
Rao
, and
G.
Kudva
, “
Optimal placement and sizing of electric vehicle charging infrastructure in a grid-tied DC microgrid using modified TLBO method
,”
Energies
16
,
1781
(
2023
).
22.
G.
Zhu
,
G.
Yan
, and
D.
Garmroudi
, “
Optimizing solar-wind hybrid energy systems for sustainable charging stations and commercial applications: A two-stage framework with ebola-inspired optimization
,”
Expert Syst. Appl.
246
,
123180
(
2024
).
23.
A. A.
Kareim Al-Sahlawi
,
S. Md.
Ayob
,
C. W.
Tan
,
H. M.
Ridha
, and
D. M.
Hachim
, “
Optimal design of grid-connected hybrid renewable energy system considering electric vehicle station using improved multi-objective optimization: Techno-Economic Perspectives
,”
Sustainability
16
,
2491
(
2024
).
24.
K. K.
Nandini
,
N. S.
Jayalakshmi
, and
V.
Jadoun
, “
Risk-based dynamic pricing by metaheuristic optimization approach for electric vehicle charging infrastructure powered by grid integrated microgrid system
,”
Electr. Power Syst. Res.
230
,
110250
(
2024
).
25.
G.
Zhou
,
Q.
Dong
,
Y.
Zhao
,
H.
Wang
,
L.
Jian
, and
Y.
Jia
, “
Bilevel optimization approach to fast charging station planning in electrified transportation networks
,”
Appl. Energy
350
,
121718
(
2023
).
26.
Q.-Y.
Wang
,
X.-L.
Lv
, and
A.
Zeman
, “
Optimization of a multi-energy microgrid in the presence of energy storage and conversion devices by using an improved Gray Wolf algorithm
,”
Appl. Therm. Eng.
234
,
121141
(
2023
).
27.
W. K.
Meteab
,
S. A.
Alsultani
, and
F.
Jurado
, “
Energy management of microgrids with a smart charging strategy for electric vehicles using an improved run optimizer
,”
Energies
16
,
6038
(
2023
).
28.
Y.
Hu
,
L.
Qiao
,
F.
Gu
, and
G.
Fathi
, “
Comprehensive energy system optimization using developed COYOTE algorithm for effective management of battery, heat source, and thermal storage
,”
Energy Rep.
10
,
4218
4230
(
2023
).
29.
D.
Mazumdar
,
P. K.
Biswas
,
C.
Sain
, and
T. S.
Ustun
, “
Gao optimized sliding mode based reconfigurable step size Pb&O MPPT controller with grid integrated EV charging station
,”
IEEE Access
12
,
10608
(
2024
).
30.
A.
Aldosary
, “
Enhancing microgrid inverter-integrated charging station performance through optimization of fractional-order PI controller using the one-to-one sine cosine algorithm
,”
Fractal Fract.
8
,
139
(
2024
).
31.
O. A.
AlKawak
,
J. R.
Kumar
,
S. S.
Daniel
, and
C. V.
Reddy
, “
Hybrid method based energy management of electric vehicles using battery-super capacitor energy storage
,”
J. Energy Storage
77
,
109835
(
2024
).
32.
A. E.-S.
Nafeh
,
A. E.-F.
Omran
,
A.
Elkholy
, and
H.
Yousef
, “
Optimal economical sizing of a PV-battery grid-connected system for fast charging station of electric vehicles using modified snake optimization algorithm
,”
Results Eng.
21
,
101965
(
2024
).
33.
C. R.
Arunkumar
,
U. B.
Manthati
, and
P.
Srinivas
, “
Accurate modelling and analysis of battery–supercapacitor hybrid energy storage system in DC Microgrid Systems
,”
Energy Syst.
13
,
1055
1073
(
2021
).
34.
S.
Kirubadevi
,
T. S. S.
Sathesh Kumar
, and
C.
Venkata Krishna Reddy
, “
Optimizing cost and emission reduction in photovoltaic–Battery‐energy‐storage‐system‐integrated electric vehicle charging stations: An efficient hybrid approach
,”
Energy Technol.
12
,
2301131
(
2024
).
35.
M. A.
Al-Betar
,
M. A.
Awadallah
,
M. S.
Braik
,
S.
Makhadmeh
, and
I. A.
Doush
, “
Elk herd optimizer: A novel nature-inspired metaheuristic algorithm
,”
Artif. Intell. Rev.
57
,
48
(
2024
).
36.
B. A.
Kumar
,
B.
Jyothi
,
A. R.
Singh
,
M.
Bajaj
,
R. S.
Rathore
, and
M. B.
Tuka
, “
Hybrid genetic algorithm-simulated annealing based electric vehicle charging station placement for Optimizing distribution network resilience
,”
Sci. Rep.
14
,
7637
(
2024
).
37.
M.
Irfan
,
S.
Deilami
,
S.
Huang
,
T.
Tahir
, and
B. P.
Veettil
, “
Optimizing load frequency control in microgrid with vehicle-to-grid integration in Australia: Based on an enhanced control approach
,”
Appl. Energy
366
,
123317
(
2024
).
38.
M.
Zadehbagheri
and
A. R.
Abbasi
, “
Energy cost optimization in distribution network considering hybrid electric vehicle and photovoltaic using modified whale optimization algorithm
,”
J. Supercomput.
79
,
14427
14456
(
2023
).
39.
X.
Bai
,
Z.
Wang
,
L.
Zou
,
H.
Liu
,
Q.
Sun
, and
F. E.
Alsaadi
, “
Electric vehicle charging station planning with dynamic prediction of elastic charging demand: A hybrid particle swarm optimization algorithm
,”
Complex Intell. Syst.
8
,
1035
1046
(
2022
).
40.
A. L.
Bukar
,
C. W.
Tan
, and
K. Y.
Lau
, “
Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm
,”
Sol. Energy
188
,
685
696
(
2019
).
41.
L. A.
Wong
,
V. K.
Ramachandaramurthy
,
S. L.
Walker
,
P.
Taylor
, and
M. J.
Sanjari
, “
Optimal placement and sizing of battery energy storage system for losses reduction using whale optimization algorithm
,”
J. Energy Storage.
26
,
100892
(
2019
).
42.
N.
Liao
,
Z.
Hu
,
V.
Mrzljak
, and
S.
Arabi Nowdeh
, “
Stochastic techno-economic optimization of hybrid energy system with photovoltaic, wind, and hydrokinetic resources integrated with electric and thermal storage using improved fire hawk optimization
,”
Sustainability
16
(
16
),
6723
(
2024
).
43.
O.
Oladepo
,
T. O.
Ajewole
, and
T. T.
Awofolaju
, “
Optimum utilization of grid‐connected hybrid power system using hybrid particle swarm optimization/whale optimization algorithm
,”
Energy Storage
4
(
4
),
e337
(
2022
).
You do not currently have access to this content.