Hybrid solar concentrating systems are recognized for their superior efficiency in generating both electricity and heat from solar radiation compared to standalone thermal or photovoltaic systems. However, these systems require greater technological maturity, are complex to produce, and are currently expensive, which restricts their commercial deployment. Few reported prototypes exist, and they offer significant opportunities for improvement. This article presents a prototype of a photovoltaic thermal concentrator that uses a parabolic dish, state-of-the-art multi-junction solar cells equipped with secondary optics, and an easy-to-build active cooling system with straight fins as channels to circulate water. It covers the design, optical simulation, construction, and electrical characterization of the prototype. One advantage of the prototype is its more straightforward structure compared to other reported prototypes, which facilitates manufacturing. The prototype was tested outdoors with and without active cooling. In the first case, it was observed that without the cooling system, the concentrating photovoltaic receiver temperature exceeded 108 °C, causing the electrical efficiency to drop to 8.31%. In the second case, the receiver temperature was maintained below 50 °C. Under clear-sky conditions, the system achieved an average real concentration of 414.8 suns and an average electrical efficiency of 29.75%, representing one of the highest efficiencies reported for these hybrid systems. This experimental study marks a fundamental step toward advancing photovoltaic thermal concentrator systems and bringing them closer to technological maturity. This study demonstrates a scalable solution for hybrid solar concentration, showcasing significant advancements in thermal management and system efficiency.

1.
H.
Zaghloul
,
M.
Emam
,
M.
Abdelrahman
, and
M.
Abd Rabbo
, “
Optimization and parametric analysis of a multi-junction high-concentrator pv cell combined with a straight fins heat sink
,”
Energy Convers. Manage.
243
,
114382
(
2021
).
2.
O. Z.
Sharaf
and
M. F.
Orhan
, “
Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I–Fundamentals, design considerations and current technologies
,”
Renewable Sustainable Energy Rev.
50
,
1500
1565
(
2015
).
3.
A.
Makki
,
S.
Omer
, and
H.
Sabir
, “
Advancements in hybrid photovoltaic systems for enhanced solar cells performance
,”
Renewable Sustainable Energy Rev.
41
,
658
684
(
2015
).
4.
N. T.
Raj
,
S.
Iniyan
, and
R.
Goic
, “
A review of renewable energy based cogeneration technologies
,”
Renewable Sustainable Energy Rev.
15
,
3640
3648
(
2011
).
5.
S. S.
Joshi
and
A. S.
Dhoble
, “
Photovoltaic-thermal systems (PVT): Technology review and future trends
,”
Renewable Sustainable Energy Rev.
92
,
848
882
(
2018
).
6.
X.
Ju
,
C.
Xu
,
Z.
Liao
,
X.
Du
,
G.
Wei
,
Z.
Wang
, and
Y.
Yang
, “
A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR)
,”
Sci. Bull.
62
,
1388
1426
(
2017
).
7.
M.
Herrando
,
C. N.
Markides
, and
K.
Hellgardt
, “
A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance
,”
Appl. Energy
122
,
288
309
(
2014
).
8.
S.
Bambrook
and
A.
Sproul
, “
Maximising the energy output of a PVT air system
,”
Sol. Energy
86
,
1857
1871
(
2012
).
9.
M. A.
Eltawil
,
M. M.
Azam
, and
A. O.
Alghannam
, “
Solar PV powered mixed-mode tunnel dryer for drying potato chips
,”
Renewable Energy
116
,
594
605
(
2018
).
10.
C.
Haiping
,
G.
Xinxin
,
Z.
Heng
,
L.
Yang
,
L.
Haowen
, and
B.
Yuegang
, “
Experimental study on a flash tank integrated with low concentrating PV/T (FT-LCPVT) hybrid system for desalination
,”
Appl. Therm. Eng.
159
,
113874
(
2019
).
11.
A.
Royne
,
C. J.
Dey
, and
D. R.
Mills
, “
Cooling of photovoltaic cells under concentrated illumination: A critical review
,”
Sol. Energy Mater. Sol. Cells
86
,
451
483
(
2005
).
12.
Y.
Amanlou
,
T. T.
Hashjin
,
B.
Ghobadian
, and
e. G.
Najafi
, “
Air cooling low concentrated photovoltaic/thermal (LCPV/T) solar collector to approach uniform temperature distribution on the pv plate
,”
Appl. Therm. Eng.
141
,
413
421
(
2018
).
13.
B.
Du
,
E.
Hu
, and
M.
Kolhe
, “
Performance analysis of water cooled concentrated photovoltaic (CPV) system
,”
Renewable Sustainable Energy Rev.
16
,
6732
6736
(
2012
).
14.
N.
Aslfattahi
,
L.
Samylingam
,
A.
Abdelrazik
,
A.
Arifutzzaman
, and
R.
Saidur
, “
Mxene based new class of silicone oil nanofluids for the performance improvement of concentrated photovoltaic thermal collector
,”
Sol. Energy Mater. Sol. Cells
211
,
110526
(
2020
).
15.
W.
An
,
J.
Wu
,
T.
Zhu
, and
Q.
Zhu
, “
Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter
,”
Appl. Energy
184
,
197
206
(
2016
).
16.
K.
Papis-Frączek
and
K.
Sornek
, “
A review on heat extraction devices for cpvt systems with active liquid cooling
,”
Energies
15
,
6123
(
2022
).
17.
M.
Gharzi
,
A.
Arabhosseini
,
Z.
Gholami
, and
M. H.
Rahmati
, “
Progressive cooling technologies of photovoltaic and concentrated photovoltaic modules: A review of fundamentals, thermal aspects, nanotechnology utilization and enhancing performance
,”
Sol. Energy
211
,
117
146
(
2020
).
18.
A.
Jamar
,
Z.
Majid
,
W.
Azmi
,
M.
Norhafana
, and
A.
Razak
, “
A review of water heating system for solar energy applications
,”
Int. Commun. Heat Mass Transfer
76
,
178
187
(
2016
).
19.
A.
Herez
,
H.
El Hage
,
T.
Lemenand
,
M.
Ramadan
, and
M.
Khaled
, “
Review on photovoltaic/thermal hybrid solar collectors: Classifications, applications and new systems
,”
Sol. Energy
207
,
1321
1347
(
2020
).
20.
M.
Izadi
and
M. E. H.
Assad
, “
Use of nanofluids in solar energy systems
,” in
Design and Performance Optimization of Renewable Energy Systems
(
Elsevier
,
2021
), pp.
221
250
.
21.
L. A.
Alshuhail
,
F.
Shaik
, and
L. S.
Sundar
, “
Thermal efficiency enhancement of mono and hybrid nanofluids in solar thermal applications–A review
,”
Alexandria Eng. J.
68
,
365
404
(
2023
).
22.
Y.
Tripanagnostopoulos
, “
New designs of building integrated solar energy systems
,”
Energy Procedia
57
,
2186
2194
(
2014
).
23.
C.
de Keizer
,
M.
de Jong
,
T.
Mendes
,
M.
Katiyar
,
W.
Folkerts
,
C.
Rindt
, and
H.
Zondag
, “
Evaluating the thermal and electrical performance of several uncovered PVT collectors with a field test
,”
Energy Procedia
91
,
20
26
(
2016
).
24.
A. H.
Jaaz
,
H. A.
Hasan
,
K.
Sopian
,
A. A. H.
Kadhum
,
T. S.
Gaaz
, and
A. A.
Al-Amiery
, “
Outdoor performance analysis of a photovoltaic thermal (PVT) collector with jet impingement and compound parabolic concentrator (CPC)
,”
Materials
10
,
888
(
2017
).
25.
M.
Khalid
,
J.
Wei
,
G.
Zhang
,
H.
Xie
,
J.
Fang
,
M. A.
Qaisrani
,
Z.
Wang
, and
M.-U.-R.
Mujib-Ur-Rehman
, “
Optical performance of quasi-stationary, low-concentration, and low-profile compound parabolic concentrators
,”
J. Renewable Sustainable Energy
11
,
053701
(
2019
).
26.
I.
Karathanassis
,
E.
Papanicolaou
,
V.
Belessiotis
, and
G.
Bergeles
, “
Design and experimental evaluation of a parabolic-trough concentrating photovoltaic/thermal (CPVT) system with high-efficiency cooling
,”
Renewable Energy
101
,
467
483
(
2017
).
27.
M.
Li
,
G.
Li
,
X.
Ji
,
F.
Yin
, and
L.
Xu
, “
The performance analysis of the trough concentrating solar photovoltaic/thermal system
,”
Energy Convers. Manage.
52
,
2378
2383
(
2011
).
28.
N. J.
Liew
,
Z. J.
Yu
,
Z.
Holman
, and
H.-J.
Lee
, “
Parametric study about performances of a solar photovoltaic/thermal hybrid using a spectral beam splitting technique
,”
J. Renewable Sustainable Energy
14
,
013701
(
2022
).
29.
C.
Kong
,
Z.
Xu
, and
Q.
Yao
, “
Outdoor performance of a low-concentrated photovoltaic–thermal hybrid system with crystalline silicon solar cells
,”
Appl. Energy
112
,
618
625
(
2013
).
30.
N.
Xu
,
J.
Ji
,
W.
Sun
,
W.
Huang
,
J.
Li
, and
Z.
Jin
, “
Numerical simulation and experimental validation of a high concentration photovoltaic/thermal module based on point-focus Fresnel lens
,”
Appl. Energy
168
,
269
281
(
2016
).
31.
Q.
Chen
,
M.
Burhan
,
F. H.
Akhtar
,
D.
Ybyraiymkul
,
M. W.
Shahzad
,
Y.
Li
, and
K. C.
Ng
, “
A decentralized water/electricity cogeneration system integrating concentrated photovoltaic/thermal collectors and vacuum multi-effect membrane distillation
,”
Energy
230
,
120852
(
2021
).
32.
J. M.
Variava
,
J. K.
Ratnadhariya
,
M. I. H.
Siddiqui
, and
K. K.
Sadasivuni
, “
3d numerical model of a concentrated photovoltaic thermal (CPV/T) system for thermal and electrical performance optimization
,”
Case Stud. Therm. Eng.
61
,
104823
(
2024
).
33.
J.
Li
,
Z.
Yang
,
Y.
Wang
,
Q.
Dong
,
S.
Qi
,
C.
Huang
,
X.
Wang
, and
R.
Lin
, “
A novel non-confocal two-stage dish concentrating photovoltaic/thermal hybrid system utilizing spectral beam splitting technology: Optical and thermal performance investigations
,”
Renewable Energy
206
,
609
622
(
2023
).
34.
A.
Buonomano
,
F.
Calise
,
M. D.
d'Accadia
, and
L.
Vanoli
, “
A novel solar trigeneration system based on concentrating photovoltaic/thermal collectors. Part 1: Design and simulation model
,”
Energy
61
,
59
71
(
2013
).
35.
C.
Renno
and
F.
Petito
, “
Design and modeling of a concentrating photovoltaic thermal (CPV/T) system for a domestic application
,”
Energy Build.
62
,
392
402
(
2013
).
36.
H.
Helmers
and
K.
Kramer
, “
Multi-linear performance model for hybrid (c) PVT solar collectors
,”
Sol. Energy
92
,
313
322
(
2013
).
37.
O. Z.
Sharaf
and
M. F.
Orhan
, “
Comparative thermodynamic analysis of densely-packed concentrated photovoltaic thermal (CPVT) solar collectors in thermally in-series and in-parallel receiver configurations
,”
Renewable Energy
126
,
296
321
(
2018
).
38.
A.
Kribus
,
D.
Kaftori
,
G.
Mittelman
,
A.
Hirshfeld
,
Y.
Flitsanov
, and
A.
Dayan
, “
A miniature concentrating photovoltaic and thermal system
,”
Energy Convers. Manage.
47
,
3582
3590
(
2006
).
39.
H.
Chayet
,
O.
Kost
,
R.
Moran
, and
I.
Lozovsky
, “
Efficient, low-cost dish concentrator for a cpv based cogeneration system
,”
AIP Conf. Proc.
1407
,
249
252
(
2011
).
40.
S.
Paredes
,
B. R.
Burg
,
P.
Ruch
,
E.
Lörtscher
,
F.
Malnati
,
M.
Cucinelli
,
D.
Bonfrate
,
A.
Mocker
,
A.
Bernard
,
G.
Ambrosetti
et al, “
Receiver-module-integrated thermal management of high-concentration photovoltaic thermal systems
,” in
2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)
(
IEEE
,
2015
), pp.
1
6
.
41.
M.
Schmitz
,
N.
Wiik
,
G.
Ambrosetti
,
A.
Pedretti
,
S.
Paredes
,
P.
Ruch
,
B.
Michel
, and
A.
Steinfeld
, “
A 6-focus high-concentration photovoltaic-thermal dish system
,”
Sol. Energy
155
,
445
463
(
2017
).
42.
K.-K.
Chong
,
T.-K.
Yew
,
C.-W.
Wong
,
M.-H.
Tan
,
W.-C.
Tan
, and
B.-H.
Lim
, “
Dense-array concentrator photovoltaic prototype using non-imaging dish concentrator and an array of cross compound parabolic concentrators
,”
Appl. Energy
204
,
898
911
(
2017
).
43.
A.
Space
, “
EFA 3C44, 5,5 x 5,5 mm2 CPV TJ solar cell
,” Enhanced Fresnel Assembly,
2016
.
44.
M.
Röger
,
C.
Prahl
, and
S.
Ulmer
, “
Fast determination of heliostat shape and orientation by edge detection and photogrammetry
,” in
Proceedings of 14th CSP SolarPACES Symposium 2008
(
SolarPACES
,
2008
), pp.
1
8
.
45.
M. J.
Blanco
,
J. M.
Amieva
, and
A.
Mancillas
, “
The tonatiuh software development project: An open source approach to the simulation of solar concentrating systems
,” in
ASME International Mechanical Engineering Congress and Exposition
(
ASME
,
2005
), Vol.
42142
, pp.
157
164
.
46.
Greenpowerscience
, “
Green power science
,”
2015
(last accessed November 29, 2023).
47.
S. E.
Himer
,
A.
Ahaitouf
,
S.
El-Yahyaoui
,
A.
Mechaqrane
, and
A.
Ouagazzaden
, “
A comparative of four secondary optical elements for CPV systems
,”
AIP Conf. Proc.
2012
,
030003
(
2018
).
48.
L.
Martínez-Manuel
,
W.
Wang
, and
M. I.
Peña-Cruz
, “
Optimization of the radiative flux uniformity of a modular solar simulator to improve solar technology qualification testing
,”
Sustainable Energy Technol. Assess.
47
,
101372
(
2021
).
49.
M.
Shanmugam
and
L. S.
Maganti
, “
Evaluation of heat flux distribution characteristics of a concentrated solar dish collector with different geometric indices
,”
IOP Conf. Ser.: Earth Environ. Sci.
1100
,
012001
(
2022
).
50.
L.
Chanphavong
,
V.
Chanthaboune
,
S.
Phommachanh
,
X.
Vilaida
, and
P.
Bounyanite
, “
Enhancement of performance and exergy analysis of a water-cooling solar photovoltaic panel
,”
Total Environ. Res. Themes
3–4
,
100018
(
2022
).
51.
S. M.
González
,
C. V. C.
de León
,
J. E. D.
Herrera
, and
G. I. P.
Alvarado
, “
Technology management. design and manufacture of a heatsink
,”
DYNA
90
,
9
16
(
2023
).
52.
S.
Gustafsson
, “
Corrosion properties of aluminium alloys and surface treated alloys in tap water
,” Student thesis (
Uppsala University
,
2011
).
53.
E.
Venegas-Reyes
,
N.
Ortega-Avila
,
M. I.
Peña-Cruz
,
O. J.
García-Ortiz
, and
N. A.
Rodríguez-Muñoz
, “
A linear hybrid concentrated photovoltaic solar collector: A methodology proposal of optical and thermal analysis
,”
Energies
14
,
8155
(
2021
).
54.
I.
Luque-Heredia
,
G.
Quéméré
,
R.
Cervantes
,
O.
Laurent
,
E.
Chiappori
, and
J. Y.
Chong
, “
The sun tracker in concentrator photovoltaics
,” in
Next Generation of Photovoltaics
(
Springer
,
2012
), pp.
61
93
.
55.
R.
Silva
,
M.
Pérez
, and
A.
Fernández-Garcia
, “
Modeling and co-simulation of a parabolic trough solar plant for industrial process heat
,”
Appl. Energy
106
,
287
300
(
2013
).
56.
H. A.
Kazem
and
M. T.
Chaichan
, “
Effect of environmental variables on photovoltaic performance-based on experimental studies
,”
Int. J. Civil, Mech. Energy Sci. (IJCMES)
2
,
1
8
(
2016
).
57.
R. F.
Fuentes-Morales
,
A.
Diaz-Ponce
,
M. I.
Peña-Cruz
,
P. M.
Rodrigo
,
L. M.
Valentín-Coronado
,
F.
Martell-Chavez
, and
C. A.
Pineda-Arellano
, “
Control algorithms applied to active solar tracking systems: A review
,”
Sol. Energy
212
,
203
219
(
2020
).
58.
F.
Sallaberry
,
A. G.
de Jalón
,
J.-L.
Torres
, and
R.
Pujol-Nadal
, “
Optical losses due to tracking error estimation for a low concentrating solar collector
,”
Energy Convers. Manage.
92
,
194
206
(
2015
).
59.
Z.
Arifin
,
S.
Suyitno
,
D. D. D. P.
Tjahjana
,
W. E.
Juwana
,
M. R. A.
Putra
, and
A. R.
Prabowo
, “
The effect of heat sink properties on solar cell cooling systems
,”
Appl. Sci.
10
,
7919
(
2020
).
60.
C.
Renno
,
F.
Petito
,
G.
Landi
, and
H. C.
Neitzert
, “
Experimental characterization of a concentrating photovoltaic system varying the light concentration
,”
Energy Convers. Manage.
138
,
119
130
(
2017
).
61.
M.
Angulo-Calderón
,
I.
Salgado-Tránsito
,
I.
Trejo-Zúñiga
,
C.
Paredes-Orta
,
S.
Kesthkar
, and
A.
Díaz-Ponce
, “
Development and accuracy assessment of a high-precision dual-axis pre-commercial solar tracker for concentrating photovoltaic modules
,”
Appl. Sci.
12
,
2625
(
2022
).
62.
IEC 62817
,
Photovoltaic Systems – Design Qualification of Solar Trackers
(
Standard International Electrotechnical Commission
,
2014
).
63.
Solmetric
, “
PVA-1000S analizer kit
,”
2017
(last accessed November 29, 2023).
64.
V.
Lindberg
, “
Uncertainties and error propagation
,”
Manual on Uncertainties, Graphing and the Vernier Caliper, Part I. Rochester Institute of Technology
,
NY
,
2000
(http://www. rit. edu/uphysics/uncertinities/Uncertinitiespart2. html# addsub).
65.
S.
Bowden
and
C.
Honsberg
, “
Photovoltaics education website
,” Dostupnéz (
2019
), see https://www. pveducation. org/pvcdrom/characterisation/introduction.
66.
C.
Renno
,
G.
Landi
,
F.
Petito
, and
H.
Neitzert
, “
Influence of a degraded triple-junction solar cell on the CPV system performances
,”
Energy Convers. Manage.
160
,
326
340
(
2018
).
67.
D.
Del Col
,
M.
Bortolato
,
A.
Padovan
, and
M.
Quaggia
, “
Experimental and numerical study of a parabolic trough linear CPVT system
,”
Energy Procedia
57
,
255
264
(
2014
).
68.
A.
Ahmed
, “
Thermal management of high concentrating photovoltaic system
,” Ph.D. thesis (
University of Exeter
,
2021
).
69.
N.
Xu
,
J.
Ji
,
W.
Sun
,
L.
Han
,
H.
Chen
, and
Z.
Jin
, “
Outdoor performance analysis of a 1090× point-focus Fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells
,”
Energy Convers. Manage.
100
,
191
200
(
2015
).
70.
P.
Sonneveld
,
G.
Swinkels
,
B.
Van Tuijl
,
H.
Janssen
,
J.
Campen
, and
G.
Bot
, “
Performance of a concentrated photovoltaic energy system with static linear Fresnel lenses
,”
Sol. Energy
85
,
432
442
(
2011
).
71.
C.
Feng
,
H.
Zheng
,
R.
Wang
, and
X.
Ma
, “
Performance investigation of a concentrating photovoltaic/thermal system with transmissive fresnel solar concentrator
,”
Energy Convers. Manage.
111
,
401
408
(
2016
).
72.
S.
Perini
,
X.
Tonnellier
,
P.
King
, and
C.
Sansom
, “
Theoretical and experimental analysis of an innovative dual-axis tracking linear Fresnel lenses concentrated solar thermal collector
,”
Sol. Energy
153
,
679
690
(
2017
).
73.
X.
Han
,
L.
Tu
, and
Y.
Sun
, “
A spectrally splitting concentrating pv/t system using combined absorption optical filter and linear Fresnel reflector concentrator
,”
Sol. Energy
223
,
168
181
(
2021
).
74.
J. S.
Coventry
, “
Performance of a concentrating photovoltaic/thermal solar collector
,”
Sol. Energy
78
,
211
222
(
2005
).
75.
H. A.
Gorouh
,
M.
Salmanzadeh
,
P.
Nasseriyan
,
A.
Hayati
,
D.
Cabral
,
J.
Gomes
, and
B.
Karlsson
, “
Thermal modelling and experimental evaluation of a novel concentrating photovoltaic thermal collector (CPVT) with parabolic concentrator
,”
Renewable Energy
181
,
535
553
(
2022
).
76.
M.
Shadmehri
,
A.
Abedanzadeh
,
M. B.
Shafii
,
R.
Ghasempour
, and
M.
Mohsenzadeh
, “
Development and economic evaluation of a CPVT system with PHP cooling; An experimental study
,”
Energy Convers. Manage.
283
,
116939
(
2023
).
77.
R.
Tripathi
and
G.
Tiwari
, “
Annual performance evaluation (energy and exergy) of fully covered concentrated photovoltaic thermal (PVT) water collector: An experimental validation
,”
Sol. Energy
146
,
180
190
(
2017
).
You do not currently have access to this content.