Data about behind-the-meter photovoltaics (PV) installations may be difficult to obtain for researchers. A number of investigators have considered deep learning as an attractive solution to this challenge, capable of directly identifying PV installations from aerial or satellite images. Deep learning models are well known to experience challenges when working with data from sources that they have never been exposed to. This study investigated whether generalizability can be improved by diversifying training data across available labeled data sources. We assessed the performance of models trained on all possible combinations of six different labeled datasets of aerial PV imagery, with a fixed number of total training images. Unfortunately, our results indicate that no combination of model training data achieved generalized performance that approaches models trained on data from a target data source. This implies that generalized ResNet models cannot be developed simply by modifying the configuration of the training data. Consequently, researchers should expect that some degree of data labeling is likely to be necessary when adapting these models to new applications, but our results do indicate that significant performance improvements are possible with only small (∼20%) introductions of target data. Future work may investigate alternative architectures, expanded training datasets, or ways to reduce the amount of labeled data necessary to adapt a model for a given application.

1.
P.
Denholm
,
P.
Brown
,
W.
Cole
,
T.
Mai
,
B.
Sergi
,
M.
Brown
,
P.
Jadun
,
J.
Ho
,
J.
Mayernik
,
C.
McMillan
, and
R.
Sreenath
, “
Examining supply-side options to achieve 100% clean electricity by 2035
,”
Report No. NREL/TP-6A40-81644
(
National Renewable Energy Laboratory
,
2022
).
2.
S.
Joshi
,
S.
Mittal
,
P.
Holloway
,
P. R.
Shukla
,
B.
Ó Gallachóir
, and
J.
Glynn
, “
High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential for renewable electricity generation
,”
Nat. Commun.
12
(
1
),
5738
(
2021
).
3.
W.
Hu
,
K.
Bradbury
,
J. M.
Malof
,
B.
Li
,
B.
Huang
,
A.
Streltsov
,
K.
Sydny Fujita
, and
B.
Hoen
, “
What you get is not always what you see—pitfalls in solar array assessment using overhead imagery
,”
Appl. Energy
327
,
120143
(
2022
).
4.
K.
Perry
and
C.
Campos
, “
Panel segmentation: A python package for automated solar array metadata extraction using satellite imagery
,”
IEEE J. Photovoltaics
13
,
208
212
(
2023
).
5.
J.
Yu
,
Z.
Wang
,
A.
Majumdar
, and
R.
Rajagopal
, “
DeepSolar: A machine learning framework to efficiently construct a solar deployment database in the United States
,”
Joule
2
,
2605
2617
(
2018
).
6.
Z.
Wang
,
M.-L.
Arlt
,
C.
Zanocco
,
A.
Majumdar
, and
R.
Rajagopal
, “
DeepSolar++: Understanding residential solar adoption trajectories with computer vision and technology diffusion models
,”
Joule
6
,
2611
2625
(
2022
).
7.
J. M.
Malof
,
K.
Bradbury
,
L. M.
Collins
, and
R. G.
Newell
, “
Automatic detection of solar photovoltaic arrays in high resolution aerial imagery
,”
Appl. Energy
183
,
229
240
(
2016
).
8.
K.
Mayer
,
B.
Rausch
,
M.-L.
Arlt
,
G.
Gust
,
Z.
Wang
,
D.
Neumann
, and
R.
Rajagopal
, “
3D-PV-locator: Large-scale detection of rooftop-mounted photovoltaic systems in 3D
,”
Appl. Energy
310
,
118469
(
2022
).
9.
M.
Zech
and
J.
Ranalli
, “
Predicting PV areas in aerial images with deep learning
,” in
2020 47th IEEE Photovoltaic Specialists Conference (PVSC)
(IEEE,
2020
), pp.
0767
0774
.
10.
X.
Hou
,
B.
Wang
,
W.
Hu
,
L.
Yin
,
A.
Huang
, and
H.
Wu
, “
SolarNet: A deep learning framework to map solar plants in china from satellite imagery
,” in
Climate Change AI
(
Climate Change AI
,
2020
).
11.
L.
Kruitwagen
,
K. T.
Story
,
J.
Friedrich
,
L.
Byers
,
S.
Skillman
, and
C.
Hepburn
, “
A global inventory of photovoltaic solar energy generating units
,”
Nature
598
(
7882
),
604
610
(
2021
).
12.
Allen Institute for AI
, “
Satlas
,” https://satlas.allen.ai/.
13.
R.
Zhu
,
D.
Guo
,
M. S.
Wong
,
Z.
Qian
,
M.
Chen
,
B.
Yang
,
B.
Chen
,
H.
Zhang
,
L.
You
,
J.
Heo
, and
J.
Yan
, “
Deep solar PV refiner: A detail-oriented deep learning network for refined segmentation of photovoltaic areas from satellite imagery
,”
Int. J. Appl. Earth Obs. Geoinf.
116
,
103134
(
2023
).
14.
Z.
Guo
,
Z.
Zhuang
,
H.
Tan
,
Z.
Liu
,
P.
Li
,
Z.
Lin
,
W.-L.
Shang
,
H.
Zhang
, and
J.
Yan
, “
Accurate and generalizable photovoltaic panel segmentation using deep learning for imbalanced datasets
,”
Renewable Energy
219
,
119471
(
2023
).
15.
R.
Wang
,
J.
Camilo
,
L. M.
Collins
,
K.
Bradbury
, and
J. M.
Malof
, “
The poor generalization of deep convolutional networks to aerial imagery from new geographic locations: An empirical study with solar array detection
,” in
2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)
(IEEE,
2017
), pp.
1
8
.
16.
P.
Li
,
H.
Zhang
,
Z.
Guo
,
S.
Lyu
,
J.
Chen
,
W.
Li
,
X.
Song
,
R.
Shibasaki
, and
J.
Yan
, “
Understanding rooftop PV panel semantic segmentation of satellite and aerial images for better using machine learning
,”
Adv. Appl. Energy
4
,
100057
(
2021
).
17.
J.
Ranalli
and
M.
Zech
, “
Generalizability of neural network-based identification of PV in aerial images
,” in
2023 IEEE 50th Photovoltaic Specialists Conference (PVSC)
(IEEE,
2023
), pp.
1
7
.
18.
O.
Ronneberger
,
P.
Fischer
, and
T.
Brox
, “
U-Net: Convolutional networks for biomedical
,” in
Image Segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science
, edited by
N.
Navab
,
J.
Hornegger
,
W. M.
Wells
, and
A. F.
Frangi
(
Springer International Publishing
,
Cham
,
2015
), pp.
234
241
.
19.
P.
Yakubovskiy
(
2019
). “
Segmentation models
,” GitHub. https://github.com/qubvel/segmentation_models
20.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mane
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viegas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, “
TensorFlow: Large-scale machine learning on heterogeneous distributed systems
,” arXiv:1603.04467 (
2015
).
21.
J.
Deng
,
W.
Dong
,
R.
Socher
,
L.-J.
Li
,
K.
Li
, and
L.
Fei-Fei
, “
ImageNet: A large-scale hierarchical image database
,” in
2009 IEEE Conference on Computer Vision and Pattern Recognition
(IEEE,
2009
), pp.
248
255
.
22.
K.
Bradbury
,
R.
Saboo
,
J.
Malof
,
T.
Johnson
,
A.
Devarajan
,
W.
Zhang
,
L.
Collins
,
R.
Newell
,
A.
Streltsov
, and
W.
Hu
(
2018
). “Distributed solar photovoltaic array location and extent data set for remote sensing object identification,”
Scientific Data
. https://doi.org/10.6084/m9.figshare.3385780
23.
G.
Kasmi
,
Y.-M.
Saint-Drenan
,
D.
Trebosc
,
R.
Jolivet
,
J.
Leloux
,
B.
Sarr
, and
L.
Dubus
(
2022
). “A crowdsourced dataset of aerial images with annotated solar photovoltaic arrays and installation metadata,”
Zenodo
. https://zenodo.org/records/7358126
25.
NYS interactive mapping gateway (2016)
. “Orthoimagery | gis,” NYS ITS Geospatial Services. https://gis.ny.gov/orthoimagery
You do not currently have access to this content.