A rotary solar furnace is conceptually introduced. In contrast to a conventional solar furnace, where the concentrator is fixed, in a rotary solar furnace both the concentrator and the heliostat rotate in concentric circular path around the concentrator's focus such that at each instant of time they face each other. The angular velocity of this motion equals the angular velocity of the Sun's projection line onto the Earth. In this dynamic solar furnace, the Sun appears always right above the heliostat. Consequently, the heliostat needs only a single-axis elevation tracking to redirect the sunlight along the concentrator's optical axis. This implies that the amount of harvested energy is maximal while the focus remains fixed in space. The daily concentrated radiation energy is analytically computed for each day of the year given the geographical latitude. It is shown the daily energy increase percentage crucially depends on the day of year and geographical latitude. This increase percentage reaches it maximum value in the summer solstice, which is slightly above 140 percent, for instance, in Tehran, Iran.

1.
A.
Rabl
,
Active Solar Collectors and Their Applications
(
Oxford University Press
,
1985
).
2.
Concentrating Solar Power Technology
, edited by
K.
Lovegrove
and
W.
Stein
(
Woodhead Publishing Limited
,
2012
).
3.
J.
Coventry
and
C.
Andraka
, “
Dish systems for CSP
,”
Sol. Energy
152
,
140
(
2017
).
4.
M. E.
Foulaadvand
,
A.
Aghamohammadi
,
P.
Karimi
, and
H.
Borzouei
, “
Flux profile at focal area of concentrating solar dishes
,”
Sci. Rep.
11
,
24474
(
2021
).
5.
H. S.
Al-Arab
, “
Analyzes and compares the optical characteristics for two types of solar dish concentrators
,”
J. Opt.
(published online) (
2024
).
6.
M.
Montecchi
,
G.
Cara
, and
A.
Benedetti
, “
VISdish: A new tool for canting and shape-measuring solar-dish facets
,”
Rev. Sci. Instrum.
88
,
065107
(
2017
).
7.
M. E.
Foulaadvand
and
A.
Aghamohammadi
, “
Evaluation of direct beam energy received by convex solar collectors and their optimal orientations
,”
J. Renewable Sustainable Energy
15
,
053705
(
2023
).
8.
M. A. G.
Himalaya
, “
Solar apparatus for producing high temperature
,” US patent 797,891 (22 August
1905
).
9.
F.
Trombe
, “
Solar furnaces and their applications
,”
Sol. Energy
1
(
2–3
),
9
15
(
1957
).
10.
P. E.
Glaser
, “
Engineering research with a solar furnace
,”
Sol. Energy
2
(
2
),
7
10
(
1958
).
11.
N.
Naeeni
and
M.
Yaghoubi
, “
Analysis of wind flow around a parabolic collector (1) fluid flow
,”
Renewable Energy
32
,
1898
1916
(
2007
).
12.
B. A.
Costa
,
J. M.
Lemosa
, and
L. G.
Rosa
, “
Temperature control of a solar furnace for material testing
,”
Int. J. Syst. Sci.
42
(
8
),
1253
1264
(
2011
).
13.
H.
Lee
,
K.
Chai
,
J.
Kim
,
S.
Lee
,
H.
Yoon
,
C.
Yu
et al, “
Optical performance evaluation of a solar furnace by measuring the highly concentrated solar flux
,”
Energy
66
,
63
69
(
2014
).
14.
D.
Jafrancesco
,
P.
Sansoni
,
F.
Francini
,
G.
Contento
,
C.
Cancro
,
C.
Privato
et al, “
Mirrors array for a solar furnace: Optical analysis and simulation results
,”
Renewable Energy
63
,
263
271
(
2014
).
15.
M. I.
Roldán
and
R.
Monterreal
, “
Heat flux and temperature prediction on a volumetric receiver installed in a solar furnace
,”
Appl. Energy
120
,
65
74
(
2014
).
16.
A.
Monreal
,
D.
Riveros-Rosas
,
M.
Sanchez
et al, “
Analysis of the influence of the site in the final energy cost of solar furnaces for its use in industrial applications
,”
Sol. Energy
118
,
286
294
(
2015
).
17.
D.
Fernández-González
,
I.
Ruiz-Bustinza
,
C.
González-Gasca
,
J.
Piñuela Noval
,
J.
Mochón-Castaños
,
J.
Sancho-Gorostiaga
, and
L. F.
Verdeja
, “
Concentrated solar energy applications in materials science and metallurgy
,”
Sol. Energy
170
,
520
540
(
2018
).
18.
J. C. G.
Pereira
,
J. C.
Fernandes
, and
L. G.
Rosa
, “
Mathematical models for simulation and optimization of high-flux solar furnaces
,”
Math. Comput. Appl.
24
,
65
(
2019
).
19.
H.
Kim
,
H.
Kim
,
S.
Kim
,
S.
Lee
, and
J.
Kim
, “
Hydrogen production in methane decomposition reactor using solar thermal energy
,”
Appl. Sci.
11
,
10333
(
2021
).
20.
M.
He
,
P.
Huang
,
B.
Gong
,
C.
Zang
, and
Z.
Wang
, “
Wind tunnel test study on the wind load variation law of a point focus solar furnace
,”
Front. Energy Res.
11
,
1133884
(
2023
).
21.
A.
Mboup
,
A.
Akisawa
,
R.
Pujol-Nadal
, and
V.
Martínez-Moll
, “
Design and optical performance evaluation of the three-dimensional solar concentrators with multiple compound parabolic profiles and elliptical and rectangular receiver shapes
,”
Energies
17
(
3
),
721
(
2024
).
22.
P. A.
bibloni-Mulet
,
I.
Alonso
,
J.
Vidal-Noguera
,
A.
Moia-Pol
,
V.
Canals
, and
V.
Martínez-Moll
, “
Novel additive-manufactured tracking solar concentrating system for cooking applications: Design, geometry assessment, and optical evaluation
,”
Renewable Energy
236
,
121481
(
2024
).
23.
G.
Levêque
,
R.
Bader
,
W.
Lipiński
, and
S.
Haussener
, “
High-flux optical systems for solar thermochemistry
,”
Sol. Energy
156
,
133
148
(
2017
).
24.
L. G.
Rosa
, “
Solar heat for materials processing: A review on recent achievements and a prospect on future trends
,”
ChemEngineering
3
,
83
(
2019
).
25.
F.
Müller-Trefzer
,
K.
Niedermeier
,
F.
Fellmoser
,
J.
Flesch
,
J.
Pacio
, and
T.
Wetzel
, “
Experimental results from a high heat flux solar furnace with a molten metal-cooled receiver SOMMER
,”
Sol. Energy
221
,
176
184
(
2021
).
26.
O.
Behar
,
L.
Valenzuela
, and
K.
Mohammedi
, “
Editorial: Advances in solar central receiver technology
,”
Front. Energy Res.
10
,
909169
(
2022
).
27.
M. A.
Mahmoud
,
M.
Helmy
,
M.
Morsy
, and
A.
Abd El-Al
, “
Modelling and designing of a solar furnace for curing geopolymer bricks
,”
Misr J. Agric. Eng.
40
(
3
),
259
278
(
2023
).
28.
C.
Shi
,
C.
Zang
,
F.
Sun
, and
Z.
Wang
, “
Sun tracking control technology of solar furnace
,”
J. Phys.: Conf. Ser.
2835
,
012015
(
2024
).
29.
Z.
Cui
,
F.
Bai
,
X.
Zhang
,
C.
Zang
,
H.
Zhu
, and
Z.
Wang
, “
A line-focused solar furnace for large area thermal experiment
,”
AIP Conf. Proc.
2303
,
110001
(
2020
).
30.
A.
Pal
,
A.
Kumar
,
D.
Kumar
, and
J. P.
Kesari
, “
Study of advancements of solar furnace technology to find out best suitable solar furnace for Indian conditions
,”
Int. J. Innovative Sci. Res. Technol.
8
(
5
), 1758–1762 (
2023
).
31.
J. A.
Duffie
and
W. A.
Beckman
, in
Solar Engineering of Thermal Processes
, 4th ed. (
John Wiley and Sons, Inc
.
New Jersey
,
2013
).
32.
S. A.
Kalogirou
,
Solar Energy Engineering Processes and Systems
, 2nd ed. (
Elsevier
,
2014
).
33.
V.
Grigoriev
,
K.
Milidonis
, and
M.
Blanco
, “
Sun tracking by heliostats with arbitrary orientation of primary and secondary axes
,”
Sol. Energy
207
,
1384
1389
(
2020
).
34.
A.
Aghamohammadi
and
M. E.
Foulaadvand
, “
Efficiency comparison between tracking and optimally fixed flat plate solar collectors
,”
Sci. Rep.
13
,
12712
(
2023
).
35.
A.
Aghamohammadi
,
M. E.
Foulaadvand
, and
A.
Aghamohammadi
, “
Solar irradiation on Earth: Effect of climate and altitude
,” unpublished (
2024
).
36.
H. C.
Hottel
, “
A simple model for estimating the transmittance direct solar radiation through clear atmospheres
,”
Sol. Energy
18
,
129
(
1976
).
You do not currently have access to this content.