The accurate simulation of tropical cyclone (TC) wind fields is essential for analyzing structural responses, given the potential severe damage to infrastructure caused by TCs. An improved TC boundary layer mean wind field model is proposed, building upon the Kepert model, by introducing a two-dimensional pressure field that varies with height and radius, a surface turbulent diffusivity influenced by wind speed at the lower boundary, and a surface roughness length affected by waves and spray. The accuracy of the improved model is validated through comparisons with TC observational data. Comparative analysis indicates that the Kepert model overestimates the tangential wind speed component. The two-dimensional pressure field employed in the improved model more accurately simulates the central pressure difference within the TC boundary layer. Furthermore, the incorporation of a surface turbulent diffusivity and sea surface roughness length that better reflects physical phenomena further enhances the accuracy of the improved wind field model. The structural responses of a floating offshore wind turbine (FOWT) situated in the TC eyewall region under emergency shutdown conditions are computed using both wind field models separately. The results indicate that blade tip displacement, tower top displacement, platform translation, and rotation responses (pitch and yaw) are overestimated by the Kepert model. In conclusion, the improved model accurately represents the TC structure, offering precise wind field data for assessing FOWT structural responses in TC conditions.

1.
J.
Shi
,
X.
Feng
,
R.
Toumi
,
C.
Zhang
,
K. I.
Hodges
,
A.
Tao
,
W.
Zhang
, and
J.
Zheng
, “
Global increase in tropical cyclone ocean surface waves
,”
Nat. Commun.
15
(
1
),
174
(
2024
).
2.
Y.
Wen
,
X.
Xu
,
T.
Waseda
, and
P.
Lin
, “
Energy flux variations and safety assessment of offshore wind and wave resources during typhoons in the Northern South China Sea
,”
Ocean Eng.
302
,
117683
(
2024
).
3.
S.
Keivanpour
,
A.
Ramudhin
, and
D.
Ait Kadi
, “
The sustainable worldwide offshore wind energy potential: A systematic review
,”
J. Renewable Sustainable Energy
9
(
6
),
065902
(
2017
).
4.
L.
An
,
Y.
Guan
,
Z.
Zhu
,
J.
Wu
, and
R.
Zhang
, “
Structural failure analysis of a river-crossing transmission line impacted by the super typhoon Rammasun
,”
Eng. Failure Anal.
104
,
911
931
(
2019
).
5.
L.
An
,
J.
Wu
,
Z.
Zhang
, and
R.
Zhang
, “
Failure analysis of a lattice transmission tower collapse due to the super typhoon Rammasun in July 2014 in Hainan Province, China
,”
J. Wind Eng. Ind. Aerodyn.
182
,
295
307
(
2018
).
6.
M.
Ayyad
,
M. R.
Hajj
, and
R.
Marsooli
, “
Artificial intelligence for hurricane storm surge hazard assessment
,”
Ocean Eng.
245
,
110435
(
2022
).
7.
Y.
Chang
,
J.
Wang
,
S.
Li
, and
P.
Chan
, “
A comprehensive review on the modeling of tropical cyclone boundary layer wind field
,”
Phys. Fluids
36
(
3
),
035165
(
2024
).
8.
S.
Li
and
H.
Hong
, “
Observations on a hurricane wind hazard model used to map extreme hurricane wind speed
,”
J. Struct. Eng.
141
(
10
),
04014238
(
2015
).
9.
S.
Li
and
H.
Hong
, “
Use of historical best track data to estimate typhoon wind hazard at selected sites in China
,”
Nat. Hazards
76
,
1395
1414
(
2015
).
10.
M. S.
Moss
and
S. L.
Rosenthal
, “
On the estimation of planetary boundary layer variables in mature hurricanes
,”
Mon. Weather Rev.
103
(
11
),
980
988
(
1975
).
11.
M. D.
Powell
,
S. H.
Houston
, and
T. A.
Reinhold
, “
Hurricane Andrew's landfall in South Florida. Part I. Standardizing measurements for documentation of surface wind fields
,”
Weather Forecasting
11
(
3
),
304
328
(
1996
).
12.
L. J.
Shapiro
, “
The asymmetric boundary layer flow under a translating hurricane
,”
J. Atmos. Sci.
40
(
8
),
1984
1998
(
1983
).
13.
V. J.
Cardone
,
C. V.
Greenwood
, and
J. A.
Greenwood
,
Unified Program for the Specification of Hurricane Boundary Layer Winds Over Surfaces of Specified Roughness
(Coastal Engineering Research Center,
1992
).
14.
E. F.
Thompson
and
V. J.
Cardone
, “
Practical modeling of hurricane surface wind fields
,”
J. Waterw. Port, Coastal, Ocean Eng.
122
(
4
),
195
205
(
1996
).
15.
J.
Kepert
, “
The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory
,”
J. Atmos. Sci.
58
(
17
),
2469
2484
(
2001
).
16.
J.
Kepert
and
Y.
Wang
, “
The dynamics of boundary layer jets within the tropical cyclone core. Part II. Nonlinear enhancement
,”
J. Atmos. Sci.
58
(
17
),
2485
2501
(
2001
).
17.
Y.
Meng
,
M.
Matsui
, and
K.
Hibi
, “
An analytical model for simulation of the wind field in a typhoon boundary layer
,”
J. Wind Eng. Ind. Aerodyn.
56
(
2–3
),
291
310
(
1995
).
18.
J.
Yang
,
Y.
Chen
,
Y.
Tang
,
G.
Yan
, and
Z.
Duan
, “
A high-fidelity parametric model for tropical cyclone boundary layer wind field by considering effects of land cover and terrain
,”
Atmos. Res.
260
,
105701
(
2021
).
19.
R.
Snaiki
and
T.
Wu
, “
A linear height-resolving wind field model for tropical cyclone boundary layer
,”
J. Wind Eng. Ind. Aerodyn.
171
,
248
260
(
2017
).
20.
X.
Hong
,
H.
Hong
, and
J.
Li
, “
Solution and validation of a three dimensional tropical cyclone boundary layer wind field model
,”
J. Wind Eng. Ind. Aerodyn.
193
,
103973
(
2019
).
21.
W.
Li
,
Z.
Hu
,
Z.
Pei
,
S.
Li
, and
P.
Chan
, “
A discussion on influences of turbulent diffusivity and surface drag parameterizations using a linear model of the tropical cyclone boundary layer wind field
,”
Atmos. Res.
237
,
104847
(
2020
).
22.
G.
Fang
,
L.
Zhao
,
S.
Cao
,
Y.
Ge
, and
W.
Pang
, “
A novel analytical model for wind field simulation under typhoon boundary layer considering multi-field correlation and height-dependency
,”
J. Wind Eng. Ind. Aerodyn.
175
,
77
89
(
2018
).
23.
P. J.
Vickery
,
F. J.
Masters
,
M. D.
Powell
, and
D.
Wadhera
, “
Hurricane hazard modeling: The past, present, and future
,”
J. Wind Eng. Ind. Aerodyn.
97
(
7–8
),
392
405
(
2009
).
24.
S.
Chow
, “
A study of the wind field in the planetary boundary layer of a moving tropical cyclone
,” Ph.D. thesis (
New York University
,
1971
).
25.
P. J.
Vickery
,
D.
Wadhera
,
M. D.
Powell
, and
Y.
Chen
, “
A hurricane boundary layer and wind field model for use in engineering applications
,”
J. Appl. Meteorol. Climatol.
48
(
2
),
381
405
(
2009
).
26.
Y.-F.
Xiao
,
Y.-Q.
Xiao
, and
Z.-D.
Duan
, “
The typhoon wind hazard analysis in Hong Kong of China with the new formula for Holland B parameter and the CE wind field model
,” in
Proceedings of Seventh Asia-Pacific Conf. on Wind Engineering
(
2009
).
27.
A. B.
Kennedy
,
J. J.
Westerink
,
J. M.
Smith
,
M. E.
Hope
,
M.
Hartman
,
A. A.
Taflanidis
,
S.
Tanaka
,
H.
Westerink
,
K. F.
Cheung
, and
T.
Smith
, and
others
. “
Tropical cyclone inundation potential on the Hawaiian Islands of Oahu and Kauai
,”
Ocean Modell.
52-53
,
54
68
(
2012
).
28.
J. D.
Kepert
, “
Slab-and height-resolving models of the tropical cyclone boundary layer. Part I. Comparing the simulations
,”
Q. J. R. Meteorol. Soc.
136
(
652
),
1686
1699
(
2010
).
29.
R.
Snaiki
and
T.
Wu
, “
Modeling tropical cyclone boundary layer: Height-resolving pressure and wind fields
,”
J. Wind Eng. Ind. Aerodyn.
170
,
18
27
(
2017
).
30.
G. J.
Holland
, “
An analytic model of the wind and pressure profiles in hurricanes
,”
Mon. Weather Rev.
108
,
1212
1218
(
1980
).
31.
W.
Huang
and
Y. L.
Xu
, “
A refined model for typhoon wind field simulation in boundary layer
,”
Adv. Struct. Eng.
15
(
1
),
77
89
(
2012
).
32.
Y.
He
,
Y.
Li
,
P.
Chan
,
J.
Fu
,
J.
Wu
, and
Q.
Li
, “
A height-resolving model of tropical cyclone pressure field
,”
J. Wind Eng. Ind. Aerodyn.
186
,
84
93
(
2019
).
33.
X.
Yang
,
Y.
Zhang
,
S.
Wang
, and
H.
Chen
, “
Improved model-free adaptive control considering wind speed and platform motion for floating offshore wind turbines
,”
J. Renewable Sustainable Energy
15
(
3
),
033309
(
2023
).
34.
A.
Lamei
,
M.
Hayatdavoodi
,
H. R.
Riggs
, and
R. C.
Ertekin
, “
Dynamic response of multi-unit floating offshore wind turbines to wave, current, and wind loads
,”
J. Renewable Sustainable Energy
16
(
2
),
023307
(
2024
).
35.
R.
Zhang
,
L.
An
,
L.
He
,
X.
Yang
, and
Z.
Huang
, “
Reliability analysis and inverse optimization method for floating wind turbines driven by dual meta-models combining transient-steady responses
,”
Reliab. Eng. Syst. Saf.
244
,
109957
(
2024
).
36.
C.
Mouchref
,
B.
Viggiano
,
O.
Ferčák
,
J.
Bossuyt
,
N.
Ali
,
C.
Meneveau
,
D.
Gayme
, and
R.
Cal
, “
Wave-phase dependence of Reynolds shear stress in the wake of fixed-bottom offshore wind turbine via quadrant analysis
,”
J. Renewable Sustainable Energy
16
(
3
),
033301
(
2024
).
37.
Z.
Li
,
S.
Chen
,
H.
Ma
, and
T.
Feng
, “
Design defect of wind turbine operating in typhoon activity zone
,”
Eng. Failure Anal.
27
,
165
172
(
2013
).
38.
X.
Chen
,
C.
Li
, and
J.
Xu
, “
Failure investigation on a coastal wind farm damaged by super typhoon: A forensic engineering study
,”
J. Wind Eng. Ind. Aerodyn.
147
,
132
142
(
2015
).
39.
X.
Chen
and
J. Z.
Xu
, “
Structural failure analysis of wind turbines impacted by super typhoon Usagi
,”
Eng. Failure Anal.
60
,
391
404
(
2016
).
40.
J.-S.
Chou
,
Y.-C.
Ou
,
K.-Y.
Lin
, and
Z.-J.
Wang
, “
Structural failure simulation of onshore wind turbines impacted by strong winds
,”
Eng. Struct.
162
,
257
269
(
2018
).
41.
C.
Sheng
and
H.
Hong
, “
Reliability and fragility assessment of offshore floating wind turbine subjected to tropical cyclone hazard
,”
Struct. Saf.
93
,
102138
(
2021
).
42.
Y.
Wang
,
Q.
Yang
,
T.
Li
, and
X.
Hong
, “
Feasibility of typhoon models and wind power spectra on response analysis of parked wind turbines
,”
J. Wind Eng. Ind. Aerodyn.
242
,
105579
(
2023
).
43.
R.
Zhang
,
L.
He
, and
L.
An
, “
A dynamic probabilistic analysis method for wind turbine rotor based on the surrogate model
,”
J. Renewable Sustainable Energy
15
(
1
),
013304
(
2023
).
44.
M. D.
Powell
,
P. J.
Vickery
, and
T. A.
Reinhold
, “
Reduced drag coefficient for high wind speeds in tropical cyclones
,”
Nature
422
(
6929
),
279
283
(
2003
).
45.
I. S.
Jones
and
Y.
Toba
,
Wind Stress over the Ocean
(
Cambridge University Press
,
2001
).
46.
B.
Liu
,
C.
Guan
, and
L.
Xie
, “
The wave state and sea spray related parameterization of wind stress applicable from low to extreme winds
,”
J. Geophys. Res. Oceans
117
(
C11
),
C00J22
, https://doi.org/10.1029/2011JC007786 (
2012
).
47.
J.
Holton
,
An Introduction to Dynamic Meteorology
(
Elsevier
,
2013
).
48.
R. C.
Foster
, “
Boundary-layer similarity under an axisymmetric, gradient wind vortex
,”
Boundary Layer Meteorol.
131
,
321
344
(
2009
).
49.
J.
Yang
,
Y.
Chen
,
H.
Zhou
, and
Z.
Duan
, “
A height-resolving tropical cyclone boundary layer model with vertical advection process
,”
Nat. Hazards
107
,
723
749
(
2021
).
50.
P. J.
Vickery
and
D.
Wadhera
, “
Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H* Wind data
,”
J. Appl. Meteorol. Climatol.
47
(
10
),
2497
2517
(
2008
).
51.
G.
Holland
, “
A revised hurricane pressure–wind model
,”
Mon. Weather Rev.
136
(
9
),
3432
3445
(
2008
).
52.
M.
Satoh
,
Atmospheric Circulation Dynamics and General Circulation Models
(
Springer
,
2014
).
53.
R.
Zhang
,
L.
An
,
L.
He
, and
D.
Jiang
, “
Adaptive flexible controller frequency optimization for reducing structural response of a 10 MW floating offshore wind turbine
,”
Int. J. Struct. Stab. Dyn.
24
,
2450073
(
2024
).
54.
A.
Yamaguchi
,
M.
Blanco
, and
S.
Takeshi
, “
An effect of the averaging time on maximum mean wind speeds during tropical cyclone
,” in
European Wind Energy Conference and Exhibition
(
2012
).
55.
P. J.
Klotzbach
,
M. M.
Bell
,
S. G.
Bowen
,
E. J.
Gibney
,
K. R.
Knapp
, and
C. J.
Schreck
, “
Why hurricane categories should be based on surface pressure
,”
Bull. Am. Meteorol. Soc.
101
(
8
),
683
688
(
2020
).
56.
C.
Bak
,
F.
Zahle
,
R.
Bitsche
,
T.
Kim
,
A.
Yde
,
L. C.
Henriksen
,
M. H.
Hansen
,
J. P. A. A.
Blasques
,
M.
Gaunaa
, and
A.
Natarajan
, “
The DTU 10-MW reference wind turbine
,” in
Danish Wind Power Research
(
2013
).
57.
J. M.
Jonkman
,
Modeling of the UAE Wind Turbine for Refinement of FAST {_} AD
(
National Renewable Energy Laboratory
,
Golden, CO
,
2003
).
58.
C.
Sinsabvarodom
,
B. J.
Leira
,
K. V.
Høyland
,
A.
Naess
, and
W.
Chai
, “
A generalized ice drift spectrum based on measurements in the Beaufort Sea
,”
Ocean Eng.
296
,
116832
(
2024
).
59.
S. R.
Patro
,
S.
Panda
,
G.
Ramana
, and
A.
Banerjee
, “
Optimal multiple tuned mass dampers for monopile supported offshore wind turbines using Genetic Algorithm
,”
Ocean Eng.
298
,
117356
(
2024
).
60.
B.
Jonkman
, “
TurbSim user's guide: Version 1.50
,”
Technical Report No. NREL/TP-500-46198
(
National Renewable Energy Laboratory
,
2009
).
61.
N.
Sarkar
and
A. D.
Ghosh
, “
A frequency domain study on deck isolation effectiveness in control of wave-induced vibration of offshore jacket platform
,”
Ocean Eng.
270
,
113682
(
2023
).
You do not currently have access to this content.