Severe sand and dust storms are prevalent in western China, causing erosion of wind turbine blades and reducing their aerodynamic efficiency. Existing studies mostly use outcome-based approaches to analyze the power loss in wind turbines due to modifications in blade aerodynamic profiles, lacking in-depth research into the underlying mechanisms of these aerodynamic profile changes. This study explores the coupling between continuous and discrete phases and investigates the energy dissipation following particle-blade collisions. Collision areas and particle-blade density are analyzed under varying particle sizes and attack angles employing unsteady methods and stochastic trajectory models. Results indicate that collisions primarily occur at the blade's leading edge, yet a band-shaped area with minimal collision concentration forms at the intersection of the leading edge's suction and pressure sides due to leading edge separation, elucidating why the leading-edge tip is not the most heavily worn area initially. As particle size increases, this low-collision band widens, and the collision area shifts from the pressure side to the suction side, with fewer multiple collisions. Different attack angles reveal the blade tip endures the most collisions, followed by the pressure side, providing a theoretical framework for aerodynamic profile adjustments and offers insights for blade profile protection and restoration.

1.
Z.
Liang
, “
In 2023, China's wind power technology development opens a new chapter
,”
Wind Power
02
,
54
55
(
2024
).
2.
X.
Jin
, “
Overview of China's energy and power development in 2023
,”
Energy (in Chinese)
03
,
29
35
(
2024
).
3.
G.
Luo
,
E.
Dan
,
X.
Zhang
, and
Y.
Guo
, “
Why the wind curtailment of northwest china remains high
,”
Sustainability
10
,
570
(
2018
).
4.
J.
Dai
,
X.
Yang
, and
L.
Wen
, “
Development of wind power industry in china: A comprehensive assessment
,”
Renewable Sustainable Energy Rev.
97
,
156
164
(
2018
).
5.
H.
Law
and
V.
Koutsos
, “
Leading edge erosion of wind turbines: Effect of solid airborne particles and rain on operational wind farms
,”
Wind Energy
23
,
1955
1965
(
2020
).
6.
A.
Tempelis
,
K. M.
Jespersen
,
K.
Dyer
,
A.
Clack
, and
L.
Mishnaevsky
, “
How leading edge roughness influences rain erosion of wind turbine blades?
,”
Wear
552–553
,
205446
(
2024
).
7.
N.
Dalili
,
A.
Edrisy
, and
R.
Carriveau
, “
A review of surface engineering issues critical to wind turbine performance
,”
Renewable Sustainable Energy Rev.
13
,
428
438
(
2009
).
8.
A.
Diab
,
M.
Alaa
,
A.
Hossam El-Din
,
H.
Salem
, and
Z.
Ghoneim
, “
Performance degradation of wind turbine airfoils due to dust contamination: A comparative numerical study
,” in
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
(
American Society of Mechanical Engineers
,
2015
), Paper No. GT2015-44012, p.
V009T46A028
.
9.
C. M.
Langel
,
R.
Chow
,
O. F.
Hurley
,
C. C. P.
Van Dam
,
D. C.
Maniaci
,
R. S.
Ehrmann
, and
E. B.
White
, “
Analysis of the impact of leading edge surface degradation on wind turbine performance
,” AIAA Paper No. 2015-0489,
2015
.
10.
F.
Hummel
,
M.
Lötzerich
,
P.
Cardamone
, and
L.
Fottner
, “
Surface roughness effects on turbine blade aerodynamics
,”
J. Turbomach.
127
,
453
461
(
2005
).
11.
E.
Sagol
,
M.
Reggio
, and
A.
Ilinca
, “
Issues concerning roughness on wind turbine blades
,”
Renewable Sustainable Energy Rev.
23
,
514
525
(
2013
).
12.
X.
Munduate
and
E.
Ferrer
, “
CFD predictions of transition and distributed roughness over a wind turbine airfoil
,” AIAA Paper No. 2009-269,
2009
.
13.
L.
Enpei
,
M.
Gaosheng
,
L.
Ye
,
Z.
Xiaobo
,
W.
Faming
,
L.
Shoutu
, and
L.
Deshun
, “
A review of the influence of sand-dust environment on the mechanical properties of key components of wind turbines
,”
Sci. China: Phys., Mech. Astron.
53
,
133
145
(
2023
).
14.
M. G.
Khalfallah
and
A. M.
Koliub
, “
Effect of dust on the performance of wind turbines
,”
Desalination
209
,
209
220
(
2007
).
15.
N.
Ren
and
J.
Ou
et al, “
Dust effect on the performance of wind turbine airfoils
,”
J. Electromagn. Anal. Appl.
01
,
102
107
(
2009
).
16.
H.
Salem
,
A.
Diab
, and
Z.
Ghoneim
, “
CFD simulation and analysis of performance degradation of wind turbine blades in dusty envirnonments
,” in
International Conference on Renewable Energy Research and Applications (ICRERA)
(
IEEE
,
2013
), pp.
827
832
.
17.
L.
Mishnaevsky
, Jr.
, “
Repair of wind turbine blades: Review of methods and related computational mechanics problems
,”
Renewable Energy
140
,
828
839
(
2019
).
18.
S.
Stephenson
, “
Wind blade repair: Planning, safety, flexibility
,” https://www.compositesworld.com/columns/wind-blade-repair-planning-safety-flexibility(2) (
2011
).
19.
M. H.
Keegan
,
D.
Nash
, and
M.
Stack
, “
On erosion issues associated with the leading edge of wind turbine blades
,”
J. Phys. D
46
,
383001
(
2013
).
20.
L.
Mishnaevsky
, Jr.
,
A.
Tempelis
,
N.
Kuthe
, and
P.
Mahajan
, “
Recent developments in the protection of wind turbine blades against leading edge erosion: Materials solutions and predictive modelling
,”
Renewable Energy
215
,
118966
(
2023
).
21.
D.
Li
,
L. R.
Li Yinran
, and
M.
Ruijie
, “
Numerical study on erosion and wear of wind turbine blades in wind-sand environment
,”
J. Sol. Energy
39
,
627
632
(
2018
).
22.
L.
Dai
,
S.
Yao
,
X.
Wang
, and
S.
Kang
, “
Numerical simulation study on the impact of sand-containing airflow on the erosion performance of wind turbine blades
,”
J. Sol. Energy
39
,
247
252
(
2018
).
23.
Q.
Zhen
,
S.
Chen
,
D.
Wan
,
C.
Yan
,
K.
Sun
, and
D.
Li
, “
Numerical study on the erosion wear of wind turbine blades by sand-laden wind
,”
J. Sol. Energy
43
,
257
(
2022
).
24.
D.
Li
,
Z.
Zhao
,
Y.
Li
,
Q.
Wang
,
R.
Li
, and
Y.
Li
, “
Effects of the particle stokes number on wind turbine airfoil erosion
,”
Appl. Math. Mech.
39
,
639
652
(
2018
).
25.
N.-M.
Barkoula
and
J.
Karger-Kocsis
, “
Review processes and influencing parameters of the solid particle erosion of polymers and their composites
,”
J. Mater. Sci.
37
,
3807
3820
(
2002
).
26.
Q.
Wang
,
M.
Yu
,
D.
Li
, and
R.
Li
, “
Dynamic stall characteristics of wind turbine airfoil in sand-wind environment
,”
Ocean Eng.
274
,
114080
(
2023
).
27.
X.
Li
and
W.
Qi
, “
Numerical simulation of horizontal axis wind turbine blades in wind-sand flow field
,”
Mod. Manuf. Eng.
64–67
,
107
(
2014
).
28.
L.
Gao
,
Y.
Liu
, and
H.
Hu
, “
An experimental investigation of dynamic ice accretion process on a wind turbine airfoil model considering various icing conditions
,”
Int. J. Heat Mass Transfer
133
,
930
939
(
2019
).
29.
M.
Ge
,
H.
Zhang
,
Y.
Wu
, and
Y.
Li
, “
Effects of leading edge defects on aerodynamic performance of the S809 airfoil
,”
Energy Convers. Manage.
195
,
466
479
(
2019
).
30.
G.
Fiore
and
M. S.
Selig
, “
A simulation of operational damage for wind turbine blades
,” AIAA Paper No. 2014-2848,
2014
.
31.
Q. H.
Mazumder
,
S. A.
Shirazi
, and
B. S.
McLaury
, “
Prediction of solid particle erosive wear of elbows in multiphase annular flow-model development and experimental validations
,”
J. Energy Res. Technol.
130
,
023001
(
2008
).
32.
B.
Barker
,
B.
Casaday
,
P.
Shankara
,
A.
Ameri
, and
J.
Bons
, “
Coal ash deposition on nozzle guide vanes: Part II—Computational modeling
,” in
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
(
American Society of Mechanical Engineers
,
2011
), Paper No. GT2011-46660, pp.
1757
1767
.
33.
Z.
Fang
,
Y.
Zhang
,
X.
Wu
,
L.
Sun
, and
S.
Li
, “
New explicit correlations for the critical sticking velocity and restitution coefficient of small adhesive particles: A finite element study and validation
,”
J. Aerosol Sci.
160
,
105918
(
2022
).
34.
R. S.
Anderson
and
P.
Haff
, “
Wind modification and bed response during saltation of sand in air
,” in
Aeolian Grain Transport 1: Mechanics
(
Springer
,
1991
), pp.
21
51
.
35.
H.
Huang
, “
Modeling the inhibition effect of straw checkerboard barriers on wind-blown sand
,”
Earth Surf. Dyn.
11
,
167
181
(
2023
).
36.
D. M.
Somers
, “
Design and experimental results for the S809 airfoil
,”
Report No. NREL/SR-440-6918
(
National Renewable Energy Lab.(NREL)
,
Golden, CO
,
1997
).
37.
R.
Ramsay
,
M.
Hoffman
, and
G.
Gregorek
, “
Effects of grit roughness and pitch oscillations on the S809 airfoil
,”
Report No. NREL/TP-442-7817
(
National Renewable Energy Lab.(NREL)
,
Golden, CO
,
1995
).
38.
M. M.
Hand
,
D.
Simms
,
L.
Fingersh
,
D.
Jager
,
J.
Cotrell
,
S.
Schreck
, and
S.
Larwood
, “
Unsteady aerodynamics experiment phase VI: Wind tunnel test configurations and available data campaigns
,”
Report No. NREL/TP-500-29955
(
National Renewable Energy Lab.(NREL)
,
Golden, CO
,
2001
).
39.
M.
Moshfeghi
,
M.
Ramezani
, and
N.
Hur
, “
Design and aerodynamic performance analysis of a finite span double-split S809 configuration for passive flow control in wind turbines and comparison with single-split geometries
,”
J. Wind Eng. Ind Aerodyn.
214
,
104654
(
2021
).
40.
H.
Xu
,
C.
Qiao
,
H.
Yang
, and
Z.
Ye
, “
Delayed detached eddy simulation of the wind turbine airfoil S809 for angles of attack up to 90 degrees
,”
Energy
118
,
1090
1109
(
2017
).
41.
H.
Wang
,
B.
Zhang
,
Q.
Qiu
, and
X.
Xu
, “
Flow control on the NREL S809 wind turbine airfoil using vortex generators
,”
Energy
118
,
1210
1221
(
2017
).
42.
A. C.
Aranake
,
V. K.
Lakshminarayan
, and
K.
Duraisamy
, “
Computational analysis of shrouded wind turbine configurations using a 3-dimensional RANS solver
,”
Renewable Energy
75
,
818
832
(
2015
).
43.
S.
Powell
, “
3M™ wind blade protection coating W4600
,” in
Industrial Marketing Presentation
(
2011
).
44.
N.
Gaudern
, “
A practical study of the aerodynamic impact of wind turbine blade leading edge erosion
,”
J. Phys. Conf. Ser.
524
,
012031
(
2014
).
You do not currently have access to this content.