Wind plants generate large-scale wakes, which can affect the performance of neighboring installations. Such wakes are challenging to estimate due to the inherent complexity in modeling wake interactions between large quantities of turbines at various distances. Weighted directed graph networks can inform complex models by linking turbine pairs into chains of upstream and downstream neighbors for a given wind direction. A novel interpretation of the graph network adjacency matrix is proposed where each element of the matrix represents the cumulative impact of upstream turbines on an individual. In this study, wake losses were estimated with an engineering wake model across a range of inflow conditions for nine parametric variations of a system containing two neighboring wind plants. The parametric nature of the study isolates turbine spacing within the plant, separation distance between plants, and wind direction as the main drivers of wake losses. Spatial heterogeneity is computed from the weighted average adjacency matrix of each plant arrangement. The proposed method is orders of magnitude faster than wake modeling and does not require detailed turbine information or atmospheric conditions. The weighted average adjacency matrix provides insight on the spatial organization of wake losses at various scales. Plant heterogeneity is correlated with wake losses within and among plants. Framing wind plant wake interaction in terms of graph network spatial heterogeneity provides an efficient approach for predicting wake losses within and among neighboring wind plants with applications to other complex systems where wake interactions are key factor.

1.
J. K.
Lundquist
,
K. K.
DuVivier
,
D.
Kaffine
, and
J. M.
Tomaszewski
, “
Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development
,”
Nat. Energy
4
,
26
34
(
2018
).
2.
B.
Cañadillas
,
R.
Foreman
,
V.
Barth
,
S.
Siedersleben
,
A.
Lampert
,
A.
Platis
,
B.
Djath
,
J.
Schulz-Stellenfleth
,
J.
Bange
,
S.
Emeis
et al, “
Offshore wind farm wake recovery: Airborne measurements and its representation in engineering models
,”
Wind Energy
23
,
1249
1265
(
2020
).
3.
J.
Schneemann
,
A.
Rott
,
M.
Dörenkämper
,
G.
Steinfeld
, and
M.
Kühn
, “
Cluster wakes impact on a far-distant offshore wind farm's power
,”
Wind Energy Sci.
5
,
29
49
(
2020
).
4.
N. G.
Nygaard
and
S. D.
Hansen
, “
Wake effects between two neighbouring wind farms
,”
J. Phys.: Conf. Ser.
753
,
032020
(
2016
).
5.
N. G.
Nygaard
,
S. T.
Steen
,
L.
Poulsen
, and
J. G.
Pedersen
, “
Modelling cluster wakes and wind farm blockage
,”
J. Phys.: Conf. Ser.
1618
,
062072
(
2020
).
6.
N.
Nygaard
,
L.
Poulsen
,
E.
Svensson
, and
J.
Pedersen
, “
Large-scale benchmarking of wake models for offshore wind farms
,”
J. Phys.: Conf. Ser.
2265
,
022008
(
2022
).
7.
F.
Porté-Agel
,
M.
Bastankhah
, and
S.
Shamsoddin
, “
Wind-turbine and wind-farm flows: A review
,”
Boundary-Layer Meteorol.
174
,
1
59
(
2020
).
8.
A.
Stieren
and
R. J.
Stevens
, “
Impact of wind farm wakes on flow structures in and around downstream wind farms
,”
Flow
2
,
E21
(
2022
).
9.
B.
Foloppe
,
L.
Dewitte
, and
W.
Munters
, “
Exploring cooperation between wind farms: A wake steering optimization study of the Belgian offshore wind farm cluster
,”
J. Phys.: Conf. Ser.
2505
,
012055
(
2023
).
10.
R. J.
Foreman
,
B.
Cañadillas
, and
N.
Robinson
, “
The atmospheric stability dependence of far wakes on the power output of downstream wind farms
,”
Energies
17
,
488
(
2024
).
11.
R.
Wiser
,
M.
Bolinger
,
B.
Hoen
,
D.
Millstein
,
J.
Rand
,
G.
Barbose
,
N.
Darghouth
,
W.
Gorman
,
S.
Jeong
,
E.
O'Shaughnessy
et al, Land-Based Wind Market Report: 2023 edition (
Lawrence Berkeley National Laboratory (LBNL)
,
Berkeley, CA
,
2023
).
12.
N. G.
Nygaard
and
A. C.
Newcombe
, “
Wake behind an offshore wind farm observed with dual-Doppler radars
,”
J. Phys.: Conf. Ser.
1037
,
072008
(
2018
).
13.
M.
Calaf
,
C.
Meneveau
, and
J.
Meyers
, “
Large eddy simulation study of fully developed wind-turbine array boundary layers
,”
Phys. Fluids
22
,
015110
(
2010
).
14.
L. P.
Chamorro
,
R.
Arndt
, and
F.
Sotiropoulos
, “
Turbulent flow properties around a staggered wind farm
,”
Boundary-Layer Meteorol.
141
,
349
367
(
2011
).
15.
R. J.
Stevens
,
D. F.
Gayme
, and
C.
Meneveau
, “
Coupled wake boundary layer model of wind-farms
,”
J. Renewable Sustainable Energy
7
,
023115
(
2015
).
16.
R. J.
Stevens
,
D. F.
Gayme
, and
C.
Meneveau
, “
Generalized coupled wake boundary layer model: Applications and comparisons with field and les data for two wind farms
,”
Wind Energy
19
,
2023
2040
(
2016
).
17.
G. M.
Starke
,
C.
Meneveau
,
J. R.
King
, and
D. F.
Gayme
, “
The area localized coupled model for analytical mean flow prediction in arbitrary wind farm geometries
,”
J. Renewable Sustainable Energy
13
,
033305
(
2021
).
18.
R.
Scott
,
B.
Viggiano
,
T.
Dib
,
N.
Ali
,
M.
Hölling
,
J.
Peinke
, and
R. B.
Cal
, “
Wind turbine partial wake merging description and quantification
,”
Wind Energy
23
,
1610
1618
(
2020
).
19.
N.
Hamilton
,
M.
Tutkun
, and
R. B.
Cal
, “
Wind turbine boundary layer arrays for Cartesian and staggered configurations: Part II, Low-dimensional representations via the proper orthogonal decomposition
,”
Wind Energy
18
,
297
315
(
2015
).
20.
J.
Bossuyt
,
M. F.
Howland
,
C.
Meneveau
, and
J.
Meyers
, “
Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel
,”
Exp. Fluids
58
,
1
17
(
2017
).
21.
J.
Bossuyt
,
C.
Meneveau
, and
J.
Meyers
, “
Effect of layout on asymptotic boundary layer regime in deep wind farms
,”
Phys. Rev. Fluids
3
,
124603
(
2018
).
22.
G. M.
Starke
,
P.
Stanfel
,
C.
Meneveau
,
D. F.
Gayme
, and
J.
King
, “
Network based estimation of wind farm power and velocity data under changing wind direction
,” in
American Control Conference (ACC)
(
IEEE
,
2021
), pp.
1803
1810
.
23.
T.
Shu
,
D.
Song
, and
Y. H.
Joo
, “
Decentralised optimisation for large offshore wind farms using a sparsified wake directed graph
,”
Appl. Energy
306
,
117986
(
2022
).
24.
G. M.
Starke
,
C.
Meneveau
,
J. R.
King
, and
D. F.
Gayme
, “
A dynamic model of wind turbine yaw for active farm control
,”
Wind Energy
27
,
1302
(
2024
).
25.
S.
Li
,
A.
Robert
,
A. A.
Faisal
, and
M. D.
Piggott
, “
Learning to optimise wind farms with graph transformers
,”
Appl. Energy
359
,
122758
(
2024
).
26.
J. A.
Bondy
and
U. S. R.
Murty
et al,
Graph Theory with Applications
(
Macmillan London
,
1976
), Vol.
290
.
27.
NREL
,
FLORIS. Version 3.1
(
NREL
,
2022
).
28.
J.
Jonkman
,
S.
Butterfield
,
W.
Musial
, and
G.
Scott
, “
Definition of a 5-MW reference wind turbine for offshore system development
,”
Report No. NREL/TP-500-38060
(
National Renewable Energy Lab.(NREL)
,
Golden, CO
,
2009
).
29.
P.
Bortolotti
,
K.
Dykes
,
K.
Merz
, and
F.
Zahle
, “
IEA wind Task 37 on systems engineering in wind energy
,” in
WP2-Reference Wind Turbines.: IEA Wind Task
, Report NREL/TP-5000-73492 (U.S. Department of Energy,
2019
), Vol.
37
, p.
565
.
30.
N. O.
Jensen
,
A Note on Wind Generator Interaction
(
Risø National Laboratory
,
1983
).
31.
C. R.
Shapiro
,
G. M.
Starke
,
C.
Meneveau
, and
D. F.
Gayme
, “
A wake modeling paradigm for wind farm design and control
,”
Energies
12
,
2956
(
2019
).
32.
S.
Frandsen
,
R.
Barthelmie
,
S.
Pryor
,
O.
Rathmann
,
S.
Larsen
,
J.
Højstrup
, and
M.
Thøgersen
, “
Analytical modelling of wind speed deficit in large offshore wind farms
,”
Wind Energy
9
,
39
53
(
2006
).
33.
R. J.
Barthelmie
,
K.
Hansen
,
S. T.
Frandsen
,
O.
Rathmann
,
J.
Schepers
,
W.
Schlez
,
J.
Phillips
,
K.
Rados
,
A.
Zervos
,
E.
Politis
et al, “
Modelling and measuring flow and wind turbine wakes in large wind farms offshore
,”
Wind Energy
12
,
431
444
(
2009
).
34.
M.
Bastankhah
and
F.
Porté-Agel
, “
A new analytical model for wind-turbine wakes
,”
Renewable Energy
70
,
116
123
(
2014
).
35.
M.
Tang
and
C. E.
Priebe
, “
Limit theorems for eigenvectors of the normalized Laplacian for random graphs
,” arXiv:1607.08601 (
2018
).
36.
R.
Scott
,
H.
Kadum
,
G.
Salmaso
,
M.
Calaf
, and
R. B.
Cal
, “
A Lacunarity-based index for spatial heterogeneity
,”
Earth Space Sci.
9
,
e2021EA002180
(
2022
).
37.
B. B.
Mandelbrot
,
The Fractal Geometry of Nature
(
WH Freeman
,
New York
,
1982
), Vol.
2
.
38.
C.
Allain
and
M.
Cloitre
, “
Characterizing the Lacunarity of random and deterministic fractal sets
,”
Phys. Rev. A
44
,
3552
3552
(
1991
).
39.
R. E.
Plotnick
,
R. H.
Gardner
,
W. W.
Hargrove
,
K.
Prestegaard
, and
M.
Perlmutter
, “
Lacunarity analysis: A general technique for the analysis of spatial patterns
,”
Phys. Rev. E
53
,
5461
(
1996
).
You do not currently have access to this content.