Thermoelectric generation (TEG) is a solid-state technique that efficiently captures waste heat from the exhaust of internal combustion engines. Heat pipes are passive energy recovery devices that work with minimum temperature decrease, making them very efficient. TEGs and heat pipes are distinguished by their absence of mechanical components and noiseless performance, relying solely on thermal energy for operation. This research examines the practicality of combining a device for thermoelectric generation with a heat pipe (TEG–heat pipe system) to capture and utilize wasted heat from a stationary diesel engine that operates in dual-fuel mode. The engine uses waste cooking oil methyl ester as a pilot fuel and introduces biogas (0.75 kg/h) as an induction fuel. The performance of the system was evaluated by conducting experiments at different engine loads, specifically 1, 2, and 3 kW. The experiments aimed to analyze the impact of integrating a heat pipe into the system. The findings suggest that incorporating a heat pipe with the thermoelectric generator (TEG) greatly increased the temperature difference between the modules. However, the amount of heat supplied to the modules reduced as the heat exchanger lengthened. In summary, the integration of TEG–heat pipe has shown the ability to produce additional electrical power from engine exhaust, hence enhancing energy efficiency.

1.
B.
Orr
,
A.
Akbarzadeh
,
M.
Mochizuki
, and
R.
Singh
, “
A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes
,”
Appl. Therm. Eng.
101
,
490
495
(
2016
).
2.
P.
Niklesh Reddy
,
N.
Khayum
,
S. K.
Paruvada
,
A.
Killol
, and
S.
Murugan
, “
Experimental study on combustion characteristics of a CI engine runs on a renewable fuel
,”
Int. J. Ambient Energy
43
,
2003
2018
(
2022
).
3.
M. N. H. M.
Hilmin
,
M. F.
Remeli
,
B.
Singh
, and
N. D. N.
Affandi
, “
Thermoelectric power generations from vehicle exhaust gas with TiO2 nanofluid cooling
,”
Therm. Sci. Eng. Prog.
18
,
100558
(
2020
).
4.
H.
Jouhara
,
N.
Khordehgah
,
S.
Almahmoud
,
B.
Delpech
,
A.
Chauhan
, and
S. A.
Tassou
, “
Waste heat recovery technologies and applications
,”
Therm. Sci. Eng. Prog.
6
,
268
289
(
2018
).
5.
N.
Khayum
,
S.
Anbarasu
, and
S.
Murugan
, “
A role of the combined effect of fuel injection parameters on a dual fuel diesel engine
,”
Mater. Today Proc.
47
,
2726
2736
(
2021
).
6.
K. K.
Pandey
and
M.
Sivalingam
, “
Investigation of low heat rejection diesel engine run on N,N′-diphenyl-p-phenylenediamine antioxidant doped Jatropha methyl ester-diesel blend
,”
Environ. Prog. Sustainable Energy
42
,
e14056
(
2022
).
7.
Y.
Zhang
, “
Thermoelectric advances to capture waste heat in automobiles
,”
ACS Energy Lett.
3
,
1523
1524
(
2018
).
8.
N.
Khayum
,
S.
Anbarasu
, and
S.
Murugan
, “
Experimental investigation of a biogas-fueled diesel engine at different biogas flow rates
,” in
Proceedings of the 7th International Conference on Advances in Energy Research
(
Springer
,
Singapore
,
2021
), pp.
913
921
.
9.
K. K.
Pandey
and
S.
Murugan
, “
Albizia lebbeck leaf extracted natural antioxidant doped biodiesel-diesel blend in low heat rejection diesel engine
,”
J. Renewable Sustainable Energy
15
,
13101
(
2023
).
10.
F. P.
Brito
,
J.
Martins
,
L. M.
Goncalves
,
N.
Antunes
, and
D.
Sousa
, “
Influence of heat pipe operating temperature on exhaust heat thermoelectric generation
,”
SAE Int. J. Passeng. Cars- Mech. Syst
6
(
2
),
652
664
(
2013
).
11.
R.
Saxena
,
P.
Pachorkar
,
A.
Jain
,
H.
Majumder
,
K. K.
Pandey
,
S. K.
Mishra
et al, “
Performance enhancement of solar air heater using artificial roughness
,”
Mater. Today Proc.
(published online).
12.
K. K.
Pandey
, “
Study on the integration of hydrogen in a multi-cylinder low heat rejection diesel engine using a ternary blend
,”
Atmos. Pollut. Res.
15
,
102250
(
2024
).
13.
R.
Patowary
and
D. C.
Baruah
, “
Thermoelectric conversion of waste heat from IC engine‐driven vehicles: A review of its application, issues, and solutions
,”
Int. J. Energy Res.
42
,
2595
2614
(
2018
).
14.
K. K.
Pandey
, “
Application of acetylene in multi-cylinder low heat rejection diesel engine fueled with ternary blend
,”
Energy
311
,
133368
(
2024
).
15.
N. P.
Reddy
,
N.
Khayum
, and
D.
Uppara
, “
Effect of different geometrical changes in the intake manifold of a DI diesel engine fueled with biodiesel-diesel blends
,” SAE Paper No. 2020-01-0346,
2020
.
16.
K. K.
Pandey
,
N.
Khayum
, and
J. H.
Shaik
, “
Comparison of machine learning algorithms on a low heat rejection diesel engine running on ternary blends
,”
J. Renewable Sustainable Energy
16
,
053101
(
2024
).
17.
W.
Srimuang
and
P.
Amatachaya
, “
A review of the applications of heat pipe heat exchangers for heat recovery
,”
Renewable Sustainable Energy Rev.
16
,
4303
4315
(
2012
).
18.
L. M.
Goncalves
,
J.
Martins
,
J.
Antunes
,
R.
Rocha
, and
F. P.
Brito
, “
Heat-pipe assisted thermoelectric generators for exhaust gas applications
,”
ASME Int. Mech. Eng. Congr. Expo.
44298
,
1387
1396
(
2010
).
19.
S.-K.
Kim
,
B.-C.
Won
,
S.-H.
Rhi
,
S.-H.
Kim
,
J.-H.
Yoo
, and
J.-C.
Jang
, “
Thermoelectric power generation system for future hybrid vehicles using hot exhaust gas
,”
J. Electron. Mater.
40
,
778
783
(
2011
).
20.
J.-C.
Jang
,
R.-G.
Chi
,
S.-H.
Rhi
,
K.-B.
Lee
,
H.-C.
Hwang
,
J.-S.
Lee
et al, “
Heat pipe-assisted thermoelectric power generation technology for waste heat recovery
,”
J. Electron. Mater.
44
,
2039
2047
(
2015
).
21.
X.
Gou
,
H.
Xiao
, and
S.
Yang
, “
Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system
,”
Appl. Energy
87
,
3131
3136
(
2010
).
22.
J.
Chen
,
L.
Zuo
,
Y.
Wu
, and
J.
Klein
, “
Modeling, experiments and optimization of an on-pipe thermoelectric generator
,”
Energy Convers. Manage.
122
,
298
309
(
2016
).
23.
Q.
Cao
,
W.
Luan
, and
T.
Wang
, “
Performance enhancement of heat pipes assisted thermoelectric generator for automobile exhaust heat recovery
,”
Appl. Therm. Eng.
130
,
1472
1479
(
2018
).
24.
S.
Lv
,
W.
He
,
Q.
Jiang
,
Z.
Hu
,
X.
Liu
,
H.
Chen
et al, “
Study of different heat exchange technologies influence on the performance of thermoelectric generators
,”
Energy Convers. Manage.
156
,
167
177
(
2018
).
25.
S.
Wu
,
Y.
Ding
,
C.
Zhang
, and
D.
Xu
, “
Improving the performance of a thermoelectric power system using a flat-plate heat pipe
,”
Chin. J. Chem. Eng.
27
,
44
53
(
2019
).
26.
P.
Nemec
,
A.
Čaja
, and
M.
Malcho
, “
Mathematical model for heat transfer limitations of heat pipe
,”
Math. Comput. Modell.
57
,
126
136
(
2013
).
27.
M. F.
Remeli
,
L.
Tan
,
A.
Date
,
B.
Singh
, and
A.
Akbarzadeh
, “
Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system
,”
Energy Convers. Manage.
91
,
110
119
(
2015
).
28.
H. W.
Coleman
and
W. G.
Steele
, Experimentation, Validation, and Uncertainty Analysis for Engineers (Wiley,
2018
).
29.
M. A.
Kunt
and
H.
Gunes
, “
Comparing the recovery performance of different thermoelectric generator modules in an exhaust system of a diesel engine both experimentally and theoretically
,”
Proc. Inst. Mech. Eng., Part D
234
,
183
190
(
2020
).
30.
Z. B.
Tang
,
Y. D.
Deng
,
C. Q.
Su
,
W. W.
Shuai
, and
C. J.
Xie
, “
A research on thermoelectric generator's electrical performance under temperature mismatch conditions for automotive waste heat recovery system
,”
Case Stud. Therm. Eng.
5
,
143
150
(
2015
).
31.
T. Y.
Kim
,
A. A.
Negash
, and
G.
Cho
, “
Waste heat recovery of a diesel engine using a thermoelectric generator equipped with customized thermoelectric modules
,”
Energy Convers. Manage.
124
,
280
286
(
2016
).
32.
S. A.
Mostafavi
and
M.
Mahmoudi
, “
Modeling and fabricating a prototype of a thermoelectric generator system of heat energy recovery from hot exhaust gases and evaluating the effects of important system parameters
,”
Appl. Therm. Eng.
132
,
624
636
(
2018
).
33.
S.
Kim
,
S.
Park
,
S.
Kim
, and
S.-H.
Rhi
, “
A thermoelectric generator using engine coolant for light-duty internal combustion engine-powered vehicles
,”
J. Electron. Mater.
40
,
812
816
(
2011
).
34.
R. G.
Chi
,
J. C.
Park
,
S. H.
Rhi
, and
K. B.
Lee
, “
Study on heat pipe assisted thermoelectric power generation system from exhaust gas
,”
Heat Mass Transfer
53
,
3295
3304
(
2017
).
35.
B.
Li
,
K.
Huang
,
Y.
Yan
,
Y.
Li
,
S.
Twaha
, and
J.
Zhu
, “
Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles
,”
Appl. Energy
205
,
868
879
(
2017
).
36.
B.
Orr
,
B.
Singh
,
L.
Tan
, and
A.
Akbarzadeh
, “
Electricity generation from an exhaust heat recovery system utilising thermoelectric cells and heat pipes
,”
Appl. Therm. Eng.
73
,
588
597
(
2014
).
37.
C.
Liu
and
W. Z.
Li
, “
An experimental study of a two-stage thermoelectric generator using heat pipe in vehicle exhaust
,”
Distrib. Gener. Altern. Energy J.
30
,
15
37
(
2015
).
38.
F. P.
Brito
,
J.
Martins
,
E.
Hançer
,
N.
Antunes
, and
L. M.
Gonçalves
, “
Thermoelectric exhaust heat recovery with heat pipe-based thermal control
,”
J. Electron. Mater.
44
,
1984
1997
(
2015
).
39.
B.
Orr
,
A.
Akbarzadeh
, and
P.
Lappas
, “
An exhaust heat recovery system utilising thermoelectric generators and heat pipes
,”
Appl. Therm. Eng.
126
,
1185
1190
(
2017
).
40.
P.
Varshil
and
D.
Deshmukh
, “
A comprehensive review of waste heat recovery from a diesel engine using organic rankine cycle
,”
Energy Rep.
7
,
3951
3970
(
2021
).
41.
A.
Obieglo
,
J.
Ringler
,
M.
Seifert
, and
W.
Hall
,
Future Efficient Dynamics with Heat Recovery
(
US Department of Energy
,
Washington, DC
,
2009
).
42.
D.
Koeberlein
,
Cummins SuperTruck Program
(
Annual Merit Review USA
,
2012
).
You do not currently have access to this content.