A raceway pond is a type of closed-loop recirculation channel that is long and shallow and is commonly used for large-scale microalgae cultivation. A key issue with the incorrect design of a raceway pond is the presence of a dead zone, where the flow velocity is low or non-uniform. This can have a negative impact on the growth of algae and reduce the efficiency of the cultivation process. To address this issue, this study focused on analyzing the hydrodynamic performance of the pond by examining the effect of different aspect ratios on velocity uniformity. Aspect ratio refers to the ratio of the length/width. This study found that an aspect ratio greater than 15 provides better uniformity in flow velocity, improving microalgae growth in the pond. This paper also investigated the impact of the location of the paddle wheel, which is used to create flow and minimize dead zones. Two different locations of the paddle wheel were considered, and computational fluid dynamics and k-ω and large eddy simulation (LES) turbulence closure equations were used to simulate the hydrodynamics of the pond. This study found that the efficiency of the raceway pond is better when the paddle wheel is placed in the middle of the total length of the pond. After simulating the raceway pond using both the k-ω and LES turbulence models, it was found that the LES model provided better results. This suggests that the LES model was able to capture the turbulent flow characteristics more accurately in the raceway pond as compared to the k-ω model.

1.
Y.
Chisti
, “
Biodiesel from microalgae
,”
Biotechnol. Adv.
25
(
3
),
294
306
(
2007
).
2.
Q.
Li
,
W.
Du
, and
D.
Liu
, “
Perspectives of microbial oils for biodiesel production
,”
Appl. Microbiol. Biotechnol.
80
,
749
756
(
2008
).
3.
S. S.
Sawant
,
H. P.
Khadamkar
,
C. S.
Mathpati
,
R.
Pandit
, and
A. M.
Lali
, “
Computational and experimental studies of high depth algal raceway pond photo-bioreactor
,”
Renew. Energy
118
,
152
159
(
2018
).
4.
S.
Campos
,
J.
Lorca
,
J.
Vidal
,
W.
Calzadilla
,
C.
Toledo-Neira
,
M.
Aranda
et al, “
Removal of contaminants of emerging concern by solar photo electro-Fenton process in a solar electrochemical raceway pond reactor
,”
Process Saf. Environ. Prot.
169
,
660
670
(
2023
).
5.
P.
Ranganathan
,
J. C.
Amal
,
S.
Savithri
, and
A.
Haridas
, “
Experimental and modelling of Arthrospira platensis cultivation in open raceway ponds
,”
Bioresour. Technol.
242
,
197
205
(
2017
).
6.
K. A.
Hafez
,
O. A.
Elsamni
, and
K. Y.
Zakaria
, “
Numerical investigation of the fully developed turbulent flow over a moving wavy wall using k–ε turbulence model
,”
Alexandria Eng. J.
50
(
2
),
145
162
(
2011
).
7.
R.
Pandey
and
M.
Premalatha
, “
Design and analysis of flow velocity distribution inside a raceway pond using computational fluid dynamics
,”
Bioprocess Biosyst. Eng.
40
,
439
450
(
2017
).
8.
J. C.
Weissman
,
R. P.
Goebel
, and
J. R.
Benemann
, “
Photobioreactor design: Comparison of open ponds and tubular reactors
,”
Biotechnol. Bioeng.
31
,
336
344
(
1988
).
9.
M. J.
Barbosa
,
M.
Albrecht
, and
R. H.
Wijffels
, “
Hydrodynamic stress and lethal events in sparged microalgae cultures
,”
Biotechnol. Bioeng.
83
(
1
),
112
120
(
2003
).
10.
W. H.
Thomas
and
C. H.
Gibson
, “
Effects of small-scale turbulence on microalgae
,”
J. Appl. Phycol.
2
,
71
77
(
1990
).
11.
E.
Berdalet
,
F.
Peters
,
V. L.
Koumandou
,
C.
Roldan
,
O.
Guadayol
, and
M.
Estrada
, “
Species‐specific physiological response of dinoflagellates to quantified small‐scale turbulence 1
,”
J. Phycol.
43
(
5
),
965
977
(
2007
).
12.
H.
Ali
,
T. A.
Cheema
, and
C. W.
Park
, “
Effect of paddle-wheel pulsating velocity on the hydrodynamic performance of high-rate algal ponds
,”
J. Energy Eng.
141
(
4
),
04014039
(
2015
).
13.
E.
Musgrove
, “
Investigating the performance of paddlewheels used in microalgae raceways for the production of biomass
,” Doctoral dissertation (
University of Southampton
,
2017
).
14.
S.
Rajput
,
B. S.
Das
, and
A. K.
Sharma
, “Different modeling approaches in increasing efficiency of raceway pond,”
Fluid Mechanics and Hydraulics (HYDRO 2021)
, Lecture Notes in Civil Engineering, edited by P. V.
Timbadiya
,
P. L.
Patel
,
V. P.
Singh
, and
B.
Barman
(
Springer
,
Singapore
,
2023
), Vol.
314
, pp.
165
177
.
15.
R. S.
Voleti
, See https://digitalcommons.usu.edu/etd/1307
for more details on experimental studies of vertical mixing in an open channel raceway for algae biofuel production
(
2012
).
16.
H.
Hadiyanto
,
S.
Elmore
,
T.
Van Gerven
, and
A.
Stankiewicz
, “
Hydrodynamic evaluations in high rate algae pond (HRAP) design
,”
Chem. Eng. J.
217
,
231
239
(
2013
).
17.
J.
Huang
,
Q.
Yang
,
J.
Chen
,
M.
Wan
,
J.
Ying
,
F.
Fan
et al, “
Design and optimization of a novel airlift-driven sloping raceway pond with numerical and practical experiments
,”
Algal Res.
20
,
164
171
(
2016
).
18.
A.
Lima
,
B.
Marinho
, and
T.
Morais
, “
Hydrodynamic analysis of flow in raceway ponds for algae cultivation under versatile conditions
,”
Aquacult. Int.
29
,
19
35
(
2021
).
19.
K.
Sompech
,
Y.
Chisti
, and
T.
Srinophakun
, “
Design of raceway ponds for producing microalgae
,”
Biofuels
3
(
4
),
387
397
(
2012
).
20.
T.
Pirasaci
,
A. Y.
Manisali
,
I.
Dogaris
,
G.
Philippidis
, and
A. K.
Sunol
, “
Hydrodynamic design of an enclosed Horizontal BioReactor (HBR) for algae cultivation
,”
Algal Res.
28
,
57
65
(
2017
).
21.
R.
Hreiz
,
B.
Sialve
,
J.
Morchain
,
R.
Escudié
,
J. P.
Steyer
, and
P.
Guiraud
, “
Experimental and numerical investigation of hydrodynamics in raceway reactors used for algaculture
,”
Chem. Eng. J.
250
,
230
239
(
2014
).
22.
J.
Huang
,
X.
Qu
,
M.
Wan
,
J.
Ying
,
Y.
Li
,
F.
Zhu
et al, “
Investigation on the performance of raceway ponds with internal structures by the means of CFD simulations and experiments
,”
Algal Res.
10
,
64
71
(
2015
).
23.
A.
Al-Homoud
and
M.
Hondzo
, “
Energy dissipation estimates in oscillating grid setup: LDV and PIV measurements
,”
Environ. Fluid Mech.
7
,
143
158
(
2007
).
24.
F.
Zeng
,
J.
Huang
,
C.
Meng
,
F.
Zhu
,
J.
Chen
, and
Y.
Li
, “
Investigation on novel raceway pond with inclined paddle wheels through simulation and microalgae culture experiments
,”
Bioprocess Biosyst. Eng.
39
,
169
180
(
2016
).
25.
K.
Liffman
,
D. A.
Paterson
,
P.
Liovic
, and
P.
Bandopadhayay
, “
Comparing the energy efficiency of different high rate algal raceway pond designs using computational fluid dynamics
,”
Chem. Eng. Res. Des.
91
(
2
),
221
226
(
2013
).
26.
B.
Xu
,
P.
Li
, and
P.
Waller
, “
Study of the flow mixing in a novel ARID raceway for algae production
,”
Renew. Energy
62
,
249
257
(
2014
).
27.
A.
Kusmayadi
,
E. A.
Suyono
,
D.
Nagarajan
,
J. S.
Chang
, and
H. W.
Yen
, “
Application of computational fluid dynamics (CFD) on the raceway design for the cultivation of microalgae: A review
,”
J. Ind. Microbiol. Biotechnol.
47
(
4–5
),
373
382
(
2020
).
28.
J.
Cheng
,
Z.
Yang
,
Q.
Ye
,
J.
Zhou
, and
K.
Cen
, “
Enhanced flashing light effect with up-down chute baffles to improve microalgal growth in a raceway pond
,”
Bioresour. Technol.
190
,
29
35
(
2015
).
29.
D. L.
Huggins
,
R. H.
Piedrahita
, and
T.
Rumsey
, “
Use of computational fluid dynamics (CFD) for aquaculture raceway design to increase settling effectiveness
,”
Aquacult. Eng.
33
(
3
),
167
180
(
2005
).
30.
S.
Devadiga
,
R.
Tiwari
,
S.
Sonkar
, and
N.
Mallick
, “
Kinetic modelling for prediction of biomass concentration of Chlorella minutissima in open raceway pond cultivation: A pilot-scale study
,”
Biomass Bioenergy
173
,
106797
(
2023
).
31.
M. L.
Peixoto
,
M. S.
Brito
,
R. J.
Santos
, and
V. J.
Vilar
, “
Kinetic model implementation in raceway pond reactors with hydrodynamic and radiation fields
,”
Chem. Eng. Res. Des.
210
,
150
(
2024
).
32.
M.
Abbaszadeh
,
S.
Maldonado
, and
G.
de Almeida
, “
Changes in velocity distribution produced by paddlewheels in algae raceway ponds
,”
Algal Res.
79
,
103454
(
2024
).
33.
H.
Amini
,
A.
Hashemisohi
,
L.
Wang
,
A.
Shahbazi
,
M.
Bikdash
,
K. C.
Dukka
, and
W.
Yuan
, “
Numerical and experimental investigation of hydrodynamics and light transfer in open raceway ponds at various algal cell concentrations and medium depths
,”
Chem. Eng. Sci.
156
,
11
23
(
2016
).
34.
X.
Guo
,
Z.
Li
,
M.
Cui
, and
B.
Wang
, “
Numerical investigation on flow characteristics of water in the fish tank on a force-rolling aquaculture platform
,”
Ocean Eng.
217
,
107936
(
2020
).
35.
D. L.
Huggins
,
R. H.
Piedrahita
, and
T.
Rumsey
, “
Analysis of sediment transport modeling using computational fluid dynamics (CFD) for aquaculture raceways
,”
Aquacult. Eng.
31
(
3–4
),
277
293
(
2004
).
36.
F. G.
Camacho
,
A. C.
Gomez
,
T. M.
Sobczuk
, and
E. M.
Grima
, “
Effects of mechanical and hydrodynamic stress in agitated, sparged cultures of Porphyridium cruentum
,”
Process Biochem.
35
(
9
),
1045
1050
(
2000
).
You do not currently have access to this content.