The precision of wind power prediction plays a vital role in ensuring the stable operation of wind power systems. To elevate this accuracy and enhance the real-time performance, this paper proposes a hybrid Support Vector Machine (SVM) method, with using the Long Short-Term Memory Network (LSTM) to categorize the wind data based on the statistical features and feedback to the trained SVM model. The hybrid Harris Hawk Optimization (HHO) SVM method adopts the Neuralprophet algorithm to model the seasonality of wind power data and then uses the Pelt technique to the LSTM aided Pelt-Neuralprophet HHO-SVM (i.e., PN-HHO-SVM) scheme, which can utilize the seasonal fluctuations inherent in wind power data. The Neuralprophet algorithm is employed to formulate the seasonal regression model of wind power data. Then, the Pelt technique is used to process the modeled data to locate the change points, so as to classify the time series with similar statistical properties. Furthermore, to tune the SVM hyperparameters for each identified cluster, the HHO algorithm is adopted. Consequently, the LSTM aided PN-HHO-SVM is achieved. The real data sourced from the National Renewable Energy Laboratory (NREL) are used for validation case studies, demonstrating the superiorities of the prediction performance, especially in distinguishing and discriminating the seasonal dynamics of wind power data characters.

1.
G.
Cuevas-Figueroa
,
P. K.
Stansby
, and
T.
Stallard
, “
Accuracy of WRF for prediction of operational wind farm data and assessment of influence of upwind farms on power production
,”
Energy
254
,
124362
(
2022
).
2.
C.
Stathopoulos
,
A.
Kaperoni
,
G.
Galanis
, and
G.
Kallos
, “
Wind power prediction based on numerical and statistical models
,”
J. Wind Eng. Ind. Aerodyn.
112
,
25
38
(
2013
).
3.
C. L.
Zhang
, “
The wind speed prediction based on AR model and BP neural network
,”
Adv. Mater. Res.
450–451
,
1593
1596
(
2012
).
4.
K.
Biswas
,
S. I.
Ahmed
,
T.
Bankefa
,
P.
Ranganathan
, and
H.
Salehfar
, “
Performance analysis of short and mid-term wind power prediction using ARIMA and hybrid models
,” in
IEEE Power and Energy Conference at Illinois (PECI)
,
2021
.
5.
J. W.
Zeng
and
W.
Qiao
, “
Short-term wind power prediction using a wavelet support vector machine
,”
IEEE Trans. Sustainable Energy
3
(
2
),
255
264
(
2012
).
6.
X. J.
Han
,
F.
Chen
,
H.
Cao
,
X. J.
Li
, and
X. L.
Zhang
, “
Short-term wind speed prediction based on LS-SVM
,” in
Proceedings of the 10th World Congress on Intelligent Control and Automation (WCICA), Beijing, China
(IEEE,
2012
), pp.
3200
3204
.
7.
L. L.
Zhang
,
M. S.
Li
,
T. Y.
Ji
, and
Q. H.
Wu
, “
Short-term wind power prediction based on intrinsic time-scale decomposition and LS-SVM
,” in
IEEE Innovative Smart Grid Technologies - Asia (ISGT-ASIA),
Melbourne, Australia
(IEEE,
2016
), pp.
41
45
.
8.
Z.
Li
,
X. R.
Luo
,
M. J.
Liu
,
X.
Cao
,
S. H.
Du
, and
H. X.
Sun
, “
Wind power prediction based on EEMD-Tent-SSA-LS-SVM
,”
Energy Rep.
8
,
3234
3243
(
2022
).
9.
Z. L.
Li
,
J.
Xia
,
A.
Liu
, and
P.
Li
, “
States prediction for solar power and wind speed using BBA-SVM
,”
IET Renewable Power Gener.
13
(
7
),
1115
1122
(
2019
).
10.
Z.
Li
,
S. H.
Zhou
,
Y. X.
Yu
,
Y.
Shang
, and
Z. Q.
Gao
, “
Short-term wind power prediction model based on WRF-RF model
,” in
Proceedings of the 8th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), Chengdu, China
(IEEE,
2023
), pp.
599
604
.
11.
F.
Harrou
,
A.
Saidi
, and
Y.
Sun
, “
Wind power prediction using bootstrap aggregating trees approach to enabling sustainable wind power integration in a smart grid
,”
Energy Convers. Manage.
201
,
112077
(
2019
).
12.
A. W.
Zhu
,
X. H.
Li
,
Z. Y.
Mo
, and
R.
Wu
, “
Wind power prediction based on a convolutional neural network
,” in
Proceedings of International Conference on Circuits, Devices and Systems (ICCDS), Chengdu, China
(IEEE,
2017
), pp.
131
135
.
13.
Z. C.
Shi
,
H.
Liang
, and
V.
Dinavahi
, “
Direct interval forecast of uncertain wind power based on recurrent neural networks
,”
IEEE Trans. Sustainable Energy
9
(
3
),
1177
1187
(
2018
).
14.
C.
Banik
,
C.
Behera
,
T. V.
Sarathkumar
, and
A. K.
Goswami
, “
Uncertain wind power forecasting using LSTM-based prediction interval
,”
IET Renewable Power Gener.
14
(
14
),
2657
2667
(
2020
).
15.
X. H.
Yuan
,
C.
Chen
,
M.
Jiang
, and
Y. B.
Yuan
, “
Prediction interval of wind power using parameter optimized Beta distribution based LSTM model
,”
Appl. Soft Comput.
82
,
105550
(
2019
).
16.
Q. Y.
Wu
,
F.
Guan
,
C.
Lv
, and
Y. Z.
Huang
, “
Ultra-short-term multi-step wind power forecasting based on CNN-LSTM
,”
IET Renewable Power Gener.
15
(
5
),
1019
1029
(
2021
).
17.
Z. M.
Yang
,
X. S.
Peng
,
P. J.
Wei
,
Y. H.
Xiong
,
X. J.
Xu
, and
J. F.
Song
, “
Short-term wind power prediction based on CEEMDAN and parallel CNN-LSTM
,” in
Proceedings of the 58th IEEE/IAS Industrial and Commercial Power Systems Technical Conference Asia (I&CPS Asia)
(
IEEE
,
Shanghai
,
China
,
2022
), pp.
1166
1172
.
18.
J. Z.
Wang
,
T.
Niu
,
H. Y.
Lu
,
W. D.
Yang
, and
P.
Du
, “
A novel framework of reservoir computing for deterministic and probabilistic wind power forecasting
,”
IEEE Trans. Sustainable Energy
11
(
1
),
337
349
(
2020
).
19.
X.
Niu
and
J.
Wang
, “
A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting
,”
Appl. Energy
241
,
519
539
(
2019
).
20.
J.
Xia
,
Z.
Yuan
,
D.
Tian
,
S.
Li
,
H.
He
, and
P.
Li
, “
A hybrid hour-ahead wind power prediction model based on variational mode decomposition and bio-inspired LSTM
,”
J. Renewable Sustainable Energy
15
(
3
),
033301
(
2023
).
21.
G.
Zhang
,
H. C.
Liu
,
J. B.
Zhang
,
Y.
Yan
,
L.
Zhang
,
C.
Wu
,
X.
Hua
, and
Y. Q.
Wang
, “
Wind power prediction based on variational mode decomposition multi-frequency combinations
,”
J. Mod. Power Syst. Clean Energy
7
(
2
),
281
288
(
2019
).
22.
X. X.
Meng
,
W. Y.
Zhao
,
Y.
Gao
,
H. T.
Wang
,
H. Y.
Zhong
, and
C.
Li
, “
Application of grey theory and neural network in medium term wind power forecasting
,” in
Proceedings of the Chinese Automation Congress (CAC), Jinan, China
(IEEE,
2017
), pp.
5328
5331
.
23.
X. Y.
Shi
,
X. W.
Lei
,
Q.
Huang
,
S. Z.
Huang
,
K.
Ren
, and
Y. Y.
Hu
, “
Hourly day-ahead wind power prediction using the hybrid model of variational model decomposition and long short-term memory
,”
Energies
11
,
3227
(
2018
).
24.
Y. X.
Dong
,
S. D.
Ma
,
H. C.
Zhang
, and
G. H.
Yang
, “
Wind power prediction based on multi-class autoregressive moving average model with logistic function
,”
J. Mod. Power Syst. Clean Energy
10
(
5
),
1184
1193
(
2022
).
25.
Z. X.
Wang
,
Q.
Li
, and
L. L.
Pei
, “
A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors
,”
Energy
154
,
522
534
,
2018
.
26.
W. Y.
Qian
and
J.
Wang
, “
An improved seasonal GM(1,1) model based on the HP filter for forecasting wind power generation in China
,”
Energy
209
,
118499
(
2020
).
27.
A.
Altan
,
S.
Karasu
, and
E.
Zio
, “
A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer
,”
Appl. Soft Comput.
100
,
106996
(
2021
).
28.
Z.-P.
Yuan
,
P.
Li
,
Z.-L.
Li
, and
J.
Xia
, “
A fully distributed privacy-preserving energy management system for networked microgrid cluster based on homomorphic encryption
,”
IEEE Trans. Smart Grid
15
(
2
),
1735
1748
(
2024
).
29.
L. L.
Li
,
X.
Zhao
,
M. L.
Tseng
, and
R. R.
Tan
, “
Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm
,”
J. Cleaner Prod.
242
,
118447
(
2020
).
30.
Y. R.
Wang
,
D. C.
Wang
, and
Y.
Tang
, “
Clustered hybrid wind power prediction model based on ARMA, PSO-SVM, and clustering methods
,”
IEEE Access
8
,
17071
17079
(
2020
).
31.
R.
Killick
,
P.
Fearnhead
, and
I. A.
Eckley
, “
Optimal detection of changepoints with a linear computational cost
,”
J. Am. Stat. Assoc.
107
(
500
),
1590
1598
(
2012
).
32.
O.
Triebe
,
H.
Hewamalage
,
P.
Pilyugina
,
N. P.
Laptev
,
C.
Bergmeir
, and
R.
Rajagopal
, “
NeuralProphet: Explainable forecasting at scale
,” arXiv:2111.15397 (
2021
).
33.
A. A.
Heidari
,
S.
Mirjalili
,
H.
Faris
,
I.
Aljarah
,
M.
Mafarja
, and
H. L.
Chen
, “
Harris hawks optimization: Algorithm and applications
,”
Future Gener. Comput. Syst.
97
,
849
872
(
2019
).
34.
F.
Karim
,
S.
Majumdar
,
H.
Darabi
, and
S.
Chen
, “
LSTM fully convolutional networks for time series classification
,”
IEEE Access
6
,
1662
1669
(
2018
).
You do not currently have access to this content.