Hydrogen energy has made significant progress as one of the technological pathways that can facilitate the green transformation of various sectors, including the chemical industry, steel production, transportation, and power generation. However, areas with high demand for hydrogen are typically located thousands of kilometers away from large-scale production facilities. Hydrogen transported from the most cost-competitive large production sites to areas that lack hydrogen resources requires converting gaseous hydrogen into a high-density liquid. Thus, global market trade is important for hydrogen carriers in long-distance and large-scale transportation. In this study, liquefied hydrogen (LH2) and ammonia (NH3), which are hydrogen-based energy carriers, are analyzed and compared in terms of economic costs, energy efficiency, and carbon dioxide (CO2) emissions. It has been demonstrated that the LH2 supply chain is more energy-efficient and has higher CO2 emissions compared to the NH3 supply chain. Furthermore, this study shows that the levelized cost of hydrogen transportation (LCoHT) delivered from Australia to Ningbo, China, is lower for NH3 (19.95 yuan/kg-H2) compared to LH2 (22.83 yuan/kg-H2). Meanwhile, the LCoHT for the two supply chains is in a similar range (27.82 yuan/kg-H2 and 21.53 yuan/kg-H2 for LH2 and NH3, respectively) from Norway to Ningbo, China. The impacts of important parameters on the LCoHT, energy efficiency, and CO2 emissions of the LH2/NH3 supply chain are also considered through a sensitivity analysis.

1.
A.
Gupta
and
S.
Suhag
, “
Evaluation of energy storage systems for sustainable development of renewable energy systems-A comprehensive review
,”
J. Renewable Sustainable Energy
14
,
032702
(
2022
).
2.
J.
Power
, “
NEDO Report of WE-NET subtask 3
,”
Report No. NEDO-WE-NET-9431
(
1995
) (in Japanese).
3.
T.
Hijikata
, “
Research and development of international clean energy network using hydrogen energy (WE-NET)
,”
Int. J. Hydrogen Energy
27
,
115
129
(
2002
).
4.
M.
Wietschel
and
U.
Hasenauer
, “
Feasibility of hydrogen corridors between the EU and its neighbouring countries
,”
Renewable Energy
32
,
2129
2146
(
2007
).
5.
H. T.
Ingason
,
H. P.
Ingolfsson
, and
P.
Jensson
, “
Optimizing site selection for hydrogen production in Iceland
,”
Int. J. Hydrogen Energy
33
,
3632
3643
(
2008
).
6.
C.
Stiller
,
A. M.
Svensson
,
S.
Møller-Holst
,
U. H.
Buenger
,
K. A.
Espegren
, and
Ø. B.
Holm
, “
Options for CO2-lean hydrogen export from Norway to Germany
,”
Energy
33
,
1623
1633
(
2008
).
7.
Y.
Yoshino
,
E.
Harada
,
K.
Inoue
,
K.
Yoshimura
,
S.
Yamashita
, and
K.
Hakamada
, “
Feasibility study of CO2 free hydrogen chain utilizing Australian brown coal linked with CCS
,”
Energy Procedia
29
,
701
709
(
2012
).
8.
S.
Kamiya
,
M.
Nishimura
, and
E.
Harada
, “
Study on introduction of CO2 free energy to Japan with liquid hydrogen
,”
Phys. Procedia
67
,
11
19
(
2015
).
9.
A. T.
Wijayanta
,
T.
Oda
,
C. W.
Purnomo
,
T.
Kashiwagi
, and
M.
Aziz
, “
Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review
,”
Int. J. Hydrogen Energy
44
,
15026
15044
(
2019
).
10.
A.
Boretti
, “
Production of hydrogen for export from wind and solar energy, natural gas, and coal in Australia
,”
Int. J. Hydrogen Energy
45
,
3899
3904
(
2020
).
11.
M.
Xue
,
Q.
Wang
,
B.
Lin
, and
K.
Tsunemi
, “
Assessment of ammonia as an energy carrier from the perspective of carbon and nitrogen footprints
,”
ACS Sustainable Chem. Eng.
7
,
12494
12500
(
2019
).
12.
P. M.
Heuser
,
D. S.
Ryberg
,
T.
Grube
,
M.
Robinius
, and
D.
Stolten
, “
Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen
,”
Int. J. Hydrogen Energy
44
,
12733
12747
(
2019
).
13.
Y.
Ishimoto
,
M.
Voldsund
,
P.
Nekså
,
S.
Roussanaly
,
D.
Berstad
, and
S. O.
Gardarsdottir
, “
Large-scale production and transport of hydrogen from Norway to Europe and Japan: Value chain analysis and comparison of liquid hydrogen and ammonia as energy carriers
,”
Int. J. Hydrogen Energy
45
,
32865
33288
(
2020
).
14.
S.
Song
,
H.
Lin
,
P.
Sherman
,
X.
Yang
,
C. P.
Nielsen
,
X.
Chen
et al, “
Production of hydrogen from offshore wind in China and cost-competitive supply to Japan
,”
Nat. Commun.
12
,
6953
(
2021
).
15.
F. I.
Gallardo
,
A. M.
Ferrario
,
M.
Lamagna
,
E.
Bocci
,
D. A.
Garcia
, and
T. E.
Baeza-Jeria
, “
A techno-economic analysis of solarhydrogen production by electrolysis in the north of Chile and the case of exportation from Atacama Desert to Japan
,”
Int. J. Hydrogen Energy
46
,
13709
13728
(
2021
).
16.
X.
Hong
,
V. B.
Thaore
,
I. A.
Karimi
,
S.
Farooq
,
X.
Wang
,
A. K.
Usadi
et al, “
Techno-enviro-economic analyses of hydrogen supply chains with an ASEAN case study
,”
Int. J. Hydrogen Energy
46
,
32914
32928
(
2021
).
17.
D. D.
Papadias
,
J. K.
Peng
, and
R. K.
Ahluwalia
, “
Hydrogen carriers: Production, transmission, decomposition, and storage
,”
Int. J. Hydrogen Energy
46
,
24169
24189
(
2021
).
18.
A.
Okunlola
,
T.
Giwa
,
G.
Di Lullo
,
M.
Davis
,
E.
Gemechu
, and
A.
Kumar
, “
Techno-economic assessment of low-carbon hydrogen export from Western Canada to Eastern Canada, the USA, the Asia-Pacific, and Europe
,”
Int. J. Hydrogen Energy
47
,
6453
6477
(
2022
).
19.
H.
Noh
,
K.
Kang
, and
Y.
Seo
, “
Environmental and energy efficiency assessments of offshore hydrogen supply chains utilizing compressed gaseous hydrogen, liquefied hydrogen, liquid organic hydrogen carriers and ammonia
,”
Int. J. Hydrogen Energy
48
,
7515
7532
(
2023
).
20.
F.
Restelli
,
E.
Spatolisan
,
L. A.
Pellegrini
,
A. R.
de Angelis
,
S.
Cattane
, and
E.
Roccaro
, “
Detailed techno-economic assessment of ammonia as green H2 carrier
,”
Int. J. Hydrogen Energy
52
,
532
547
(
2024
).
21.
McKinsey
, see https://www.mckinsey.com/industries/oil-and-gas/our-insights/the-clean-hydrogen-opportunity-for-hydrocarbon-rich-countries#/ for “
The clean hydrogen opportunity for hydrocarbon-rich countries
” (
2022
).
22.
E.
Svendsmark
,
J.
Straus
, and
P.
Crespo del Granado
, “
Developing hydrogen energy hubs: The role of H2 prices, wind power and infrastructure investments in Northern Norway
,”
Appl. Energy
376
,
124130
(
2024
).
23.
N.
Wolf
,
M. A.
Tanneberger
, and
M.
Hock
, “
Levelized cost of hydrogen production in Northern Africa and Europe in 2050: A Monte Carlo simulation for Germany, Norway, Spain, Algeria, Morocco, and Egypt
,”
Int. J. Hydrogen Energy
69
(
8
),
184
194
(
2024
).
24.
S.
Bruce
,
M.
Temminghoff
,
J.
Hayward
,
E.
Schmidt
,
C.
Munnings
,
D.
Palfreyman
, and
P.
Hartley
,
National Hydrogen Roadmap
(
CSIRO
,
Australia
,
2018
).
25.
S. D. C.
Walsh
,
L.
Easton
,
Z. H.
Weng
,
C. L.
Wang
,
J.
Moloney
, and
A.
Feitz
, “
Evaluating the economic fairways for hydrogen production in Australia
,”
Int. J. Hydrogen Energy
46
,
35985
35996
(
2021
).
26.
J.
Li
,
Y. M.
Wei
,
L.
Liu
et al, “
The carbon footprint and cost of coal-based hydrogen production with and without carbon capture and storage technology in China
,”
J. Cleaner Prod.
362
,
132514
(
2022
).
27.
Y.
Gu
,
D. F.
Wang
,
Q. Q.
Chen
et al, “
Techno-economic analysis of green methanol plant with optimal design of renewable hydrogen production: A case study in China
,”
Int. J. Hydrogen Energy
47
(
8
),
5085
5100
(
2022
).
28.
X. J.
Liang
,
Z. F.
Hong
,
X. Y.
Xue
,
X. M.
Xie
, and
Z.
Huang
, “
Economic analysis and comparison of different hydrogen production routes
,”
Energy Chem. Ind.
45
(
1
),
1
8
(
2024
) (in Chinese).
29.
Y.
Feng
,
T. T.
Cao
,
H. T.
Song
, and
W.
Lin
, “
Progress and cost analysis of distributed hydrogen production technology
,”
Pet. Process. Petrochem.
53
(
11
),
1
6
(
2022
) (in Chinese).
30.
K.
Meier
, “
Hydrogen production with sea water electrolysis using Norwegian offshore wind energy potentials
,”
Int. J. Energy Environ. Eng.
5
(
2–3
),
104
(
2014
).
31.
G.
Brandle
,
M.
Schonfisch
, and
S.
Schulte
, “
Estimating long-term global supply costs for low-carbon hydrogen
,”
Appl. Energy
302
,
117481
(
2021
).
32.
M.
Rezae
,
A.
Akimov
, and
E. M. A.
Gray
, “
Levelised cost of dynamic green hydrogen production: A case study for Australia's hydrogen hubs
,”
Appl. Energy
370
,
123645
(
2024
).
33.
C.
Cheng
and
L.
Hughes
, “
The role for offshore wind power in renewable hydrogen production in Australia
,”
J. Cleaner Prod.
391
,
136223
(
2023
).
34.
X. X.
Huang
,
J. J.
Lian
,
W.
Shen
et al, “
Economic analysis of China's large-scale hydrogen energy supply chain
,”
Southern Energy Constr.
7
(
2
),
1
13
(
2020
) (in Chinese).
35.
Z. H.
Zhang
,
Y. B.
Wen
,
J. P.
Zhang
et al, “
Simulation study on the process of carbon dioxide capture and methanation utilization of flue gas in coal-fired power plants
,”
Thermelectr. Power Gener.
50
(
1
),
87
93
(
2021
) (in Chinese).
36.
J.
Lu
,
S.
Xu
,
J.
Deng
,
W.
Wu
,
H.
Wu
, and
Z.
Yang
, “
Numerical prediction of temperature field for cargo containment system (CCS) of LNG carriers during pre-cooling operations
,”
Int. J. Hydrogen Energy
29
,
382
391
(
2016
).
37.
Q. Q.
Song
,
Energy-Environment-Economic Assessment of Maritime Supply Chain Systems for Renewable Energy Carriers
(
Huazhong University of Science and Technology
,
2022
).
38.
H. R.
Liu
and
W. S.
Lin
, “
Energy efficiency and carbon emission analysis of hydrogen transport chains based on liquid hydrogen and ammonia
,”
Chem. Ind. Eng. Prog.
43
(
3
),
1291
1298
(
2023
) (in Chinese).
39.
IRENA
, Global Trade Hydrogen,
2022
.
40.
KHI
, see www.nedo.go.jp/content/100920873.pdf for “
KHI's Activity for International Liquefied Hydrogen Supply Chain
” (
2019
).
41.
D.
Berstad
et al, “
Liquid hydrogen as prospective energy carrier: A brief review and discussion of underlying assumptions applied in value chain analysis
,”
Renewable Sustainable Energy Rev.
154
,
111772
(
2022
).
42.
M.
Al-Breiki
and
Y.
Bicer
, “
Comparative cost assessment of sustainable energy carriers produced from natural gas accounting for boil-off gas and social cost of carbon
,”
Energy Rep.
6
,
1897
1909
(
2020
).
43.
Guidehouse
,
Extending the European Hydrogen Backbone
(
Guidehouse
,
2021
).
44.
S.
Lanphen
, “
Hydrogen import terminal: Providing insights in the cost of supply chain elements of various hydrogen carriers for the import of hydrogen
,” M.S. thesis (
Delft University of Technology
,
2019
).
45.
C.
Hank,
A. Sternberg, and N. Köppel, “
Energy efficiency and economic assessment of imported energy carriers based on renewable electricity
,”
Sustainable Energy Fuels
4
(
5
),
2256
2273
(
2020
).
46.
Ø.
Sekkesaeter
, “
Evaluation of concepts and systems for marine transportation of hydrogen
,” M.S. thesis (
Norwegian University of Science and Technology
,
2019
), see https://ntnuopen.ntnu.no/ntnuxmlui/bitstream/handle/11250/2623195/no.ntnu%3Ainspera%3A2525165.pdf?sequence=1&isAllowed=y.
47.
NCE
,
Norwegian Future Value Chains for Liquid Hydrogen
(
NCE Martime Clean Tech
.,
2016
).
48.
International Energy Agency
,
The Future of Hydrogen
(
International Energy Agency
,
2019
).
49.
European Fertilizer Manufacturers' Association
,
Production of Ammonia, Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry Booklet
(
European Fertilizer Manufacturers' Association
,
2000
), Vol.
1
.
50.
H.
Haring
,
Industrial Gas Processing
(
Wiley-Vch
,
2007
), p.
36
.
51.
E. R.
Morgan
, “
Techno-economic feasibility study of ammonia plants powered by offshore wind
,” Ph.D. dissertation (
University of Massachusetts Amherst
,
2013
).
53.
M. P.
Elizabeth
,
E.
Amgad
, and
C.
Hunter
, “
Current status of hydrogen liquefaction costs
,” DOE Hydrogen and Fuel Cells Program (
2019
).
54.
LR (Lloyds Register)
, “
Techno-economic assessment of zero-carbon fuels
,” Research report (
2020
).
55.
M.
Appl
,
Ammonia: Principles and Industrial Practice
(
Wiley
,
1999
), p.
217
.
56.
H21
, see www.h21.green/wp-content/uploads/2019/01/H21-NoEPRINT-PDF-FINAL-1.pdf. for “
H21 North of England
” (
2019
).
58.
IMO
, Amendments to the international code for the construction and equipment of ships carrying liquefied gases in bulk (IGC CODE),
2014
, p.
135
.
59.
A.
Hammad
and
I.
Dincer
, “
Analysis and assessment of an advanced hydrogen liquefaction system
,”
Int. J. Hydrogen Energy
43
,
1139
1151
(
2018
).
60.
M.
Aasadnia
and
M.
Mehrpooya
, “
Large-scale liquid hydrogen production methods and approaches: A review
,”
Appl. Energy
212
,
57
83
(
2018
).
61.
J. P.
Man
,
T. J.
Ma
,
Y. D.
Yu
, and
H. T.
Ren
, “
Levelized costs and potential production of green hydrogen with wind and solar power in different provinces of mainland China
,”
J. Renewable Sustainable Energy
16
,
025902
(
2024
).
62.
M.
Raab
,
S.
Maier
, and
R.-U.
Dietrich
, “
Comparative techno-economic assessment of a large-scale hydrogen transport via liquid transport media
,”
Int. J. Hydrogen Energy
46
(
21
),
11956
11968
(
2021
).
63.
M.
Reuç
,
T.
Grube
,
M.
Robinius
,
P.
Preuster
,
P.
Wasserscheid
, and
D.
Stolten
, “
Seasonal storage and alternative carriers: A flexible hydrogen supply chain model
,”
Appl. Energy
200
,
290
302
(
2017
).
64.
Ø.
Sekkesaeter
, “
Evaluation of concepts and systems for marine transportation of hydrogen
,” M.S. thesis (
Norwegian University of Science and Technology
,
2019
).
65.
F.
Stöckl
,
W. P.
Schill
, and
A.
Zerrah
, “
Optimal supply chains and power sector benefits of green hydrogen
,”
Sci. Rep.
11
,
14191
(
2021
).
66.
X. L.
Wang
,
R. Q.
Xu
,
J. H.
Zhang
,
F. S.
Wen
, and
C. Q.
Liu
, “
Optimal capacity allocation and economic evaluation of hybrid energy storage in a wind–photovoltaic power system
,”
J. Renewable Sustainable Energy
15
,
064101
(
2023
).
67.
J. S.
Lee
,
A.
Cherif
,
H. J.
Yoon
,
S. K.
Seo
,
J. E.
Bae
,
H. J.
Shin
et al, “
Large-scale overseas transportation of hydrogen: Comparative techno-economic and environmental investigation
,”
Renewable Sustainable Energy Rev.
165
,
112556
(
2022
).
You do not currently have access to this content.