Decreasing carbon emissions becomes essential for maximizing social welfare in power systems. This study investigates the market clearing strategy for maximizing participants' benefits in both economic and environmental power systems, considering renewable energy certificates (RECs). The proposed problem formulation is solved by a particle swarm optimization algorithm and applied to a modified IEEE 30-bus system. The study shows that a combined supply offer that includes supply costs, carbon emission costs (CEC), renewable energy (RE) costs, and REC pricing resulted in the greatest cost savings. This paper demonstrates the efficiency of thorough optimization approaches. In addition, a more effective model is obtained by including demand-sided bidding in the optimization framework in addition to CEC, RE costs, and REC prices, leading to higher social welfare and encouraging the adoption of sustainable energy utilization. These results emphasize the importance of incorporating various environmental and economic factors into optimization frameworks for low-carbon power systems. Implementing this comprehensive strategy promotes substantial enhancements in social welfare and the progression of sustainable energy methodologies.

1.
IEA
,
Global CO2 Emissions Set to Increase by 5 Pct in 2021
(
COMTEX News Network, Inc.
,
2021
).
2.
The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard
,
World Business Council for Sustainable Development World Resources Institute
,
Geneva, Switzerland
,
2001
.
3.
J. H.
Williams
et al, “
The technology path to deep greenhouse gas emissions cuts by 2050: The pivotal role of electricity
,”
Science
335
(
6064
),
53
59
(
2012
).
4.
I.
Khan
, “
Importance of GHG emissions assessment in the electricity grid expansion towards a low-carbon future: A time-varying carbon intensity approach
,”
J. Cleaner Prod.
196
,
1587
1599
(
2018
).
5.
S.
Ebrahimi
,
M.
Mac Kinnon
, and
J.
Brouwer
, “
California end-use electrification impacts on carbon neutrality and clean air
,”
Appl. Energy
213
,
435
449
(
2018
).
6.
T. S.
Prasanna
and
P.
Somasundaram
, “
Fuzzy mutated evolutionary programming based algorithm for combined economic and emission dispatch
,” in
TENCON 2008 - 2008 IEEE Region 10 Conference
(
IEEE
,
2008
), pp.
1
5
.
7.
S.
Faias
,
J.
de Sousa
, and
R.
Castro
, “
Environmental dispatch of the Portuguese power system for CO2 emissions reduction
,” in
8th International Conference on the European Energy Market (EEM)
(
IEEE
,
2011
), pp.
389
394
.
8.
N.
Zhang
,
Z.
Hu
,
D.
Dai
,
S.
Dang
,
M.
Yao
, and
Y.
Zhou
, “
Unit commitment model in smart grid environment considering carbon emissions trading
,”
IEEE Trans. Smart Grid
7
(
1
),
420
427
(
2016
).
9.
K. N.
Singh
,
N.
Das
,
P. K.
Singh
,
A. K.
Goswami
, and
N. B. D.
Chudhury
, “
Unit commitment in virtual power plant with estimation of carbon emission
,” in
2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)
(
IEEE
,
2022
), pp.
1
6
.
10.
W.
Hua
,
D.
Li
,
H.
Sun
, and
P.
Matthews
, “
Unit commitment in achieving low carbon smart grid environment with virtual power plant
,” in
2017 International Smart Cities Conference (ISC2)
(
IEEE
,
2017
), pp.
1
6
.
11.
X.
Yuan
et al, “
Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm
,”
Energy
122
,
70
82
(
2017
).
12.
G.
Wang
,
H.
Ma
,
B.
Wang
,
A. M.
Alharbi
,
H.
Wang
, and
F.
Ma
, “
Multi-objective optimal power flow calculation considering carbon emission intensity
,”
Sustainability
15
(
24
),
16953
(
2023
).
13.
M.
Rezaei Adaryani
and
A.
Karami
, “
Artificial bee colony algorithm for solving multi-objective optimal power flow problem
,”
Int. J. Electr. Power Energy Syst.
53
,
219
230
(
2013
).
14.
E.
Naderi
,
M.
Pourakbari-Kasmaei
,
F. V.
Cerna
, and
M.
Lehtonen
, “
A novel hybrid self-adaptive heuristic algorithm to handle single- and multi-objective optimal power flow problems
,”
Int. J. Electr. Power Energy Syst.
125
,
106492
(
2021
).
15.
P. P.
Biswas
,
P. N.
Suganthan
,
R.
Mallipeddi
, and
G. A. J.
Amaratunga
, “
Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques
,”
Eng. Appl. Artif. Intell.
68
,
81
100
(
2018
).
16.
Y.
Fang
,
D.
Zhao Yang
,
M.
Ke
,
X.
Zhao
,
H. H.
Iu
, and
W.
Kit Po
, “
Quantum-inspired particle swarm optimization for power system operations considering wind power uncertainty and carbon tax in Australia
,”
IEEE Trans. Ind. Inf.
8
(
4
),
880
888
(
2012
).
17.
Y.-h.
Chen
,
C.
Wang
,
P.-y.
Nie
, and
Z.-r.
Chen
, “
A clean innovation comparison between carbon tax and cap-and-trade system
,”
Energy Strategy Rev.
29
,
100483
(
2020
).
18.
F.
Yu
,
X.
Chu
,
D.
Sun
, and
X.
Liu
, “
Low-carbon economic dispatch strategy for renewable integrated power system incorporating carbon capture and storage technology
,”
Energy Rep.
8
,
251
258
(
2022
).
19.
K. H. M.
Al-Hamed
and
I.
Dincer
, “
Analysis and economic evaluation of a unique carbon capturing system with ammonia for producing ammonium bicarbonate
,”
Energy Convers. Manage.
252
,
115062
(
2022
).
20.
C.
Yang
,
J.
Liu
,
H.
Liao
,
G.
Liang
, and
J.
Zhao
, “
An improved carbon emission flow method for the power grid with prosumers
,”
Energy Rep.
9
,
114
121
(
2023
).
21.
N.
Yan
,
G.
Ma
,
X.
Li
, and
J. M.
Guerrero
, “
Low-carbon economic dispatch method for integrated energy system considering seasonal carbon flow dynamic balance
,”
IEEE Trans. Sustainable Energy
14
(
1
),
576
586
(
2023
).
22.
Y.
Tao
,
J.
Qiu
,
S.
Lai
, and
J.
Zhao
, “
Renewable energy certificates and electricity trading models: Bi-level game approach
,”
Int. J. Electr. Power Energy Syst.
130
,
106940
(
2021
).
23.
N.
Aparicio
,
I.
MacGill
,
J. R.
Abbad
, and
H.
Beltran
, “
Comparison of wind energy support policy and electricity market design in Europe, the United States, and Australia
,”
IEEE Trans. Sustainable Energy
3
(
4
),
809
818
(
2012
).
24.
Q.
Zhang
,
G.
Wang
,
Y.
Li
,
H.
Li
,
B.
McLellan
, and
S.
Chen
, “
Substitution effect of renewable portfolio standards and renewable energy certificate trading for feed-in tariff
,”
Appl. Energy
227
,
426
435
(
2018
).
25.
M.
Hustveit
,
J. S.
Frogner
, and
S.-E.
Fleten
, “
Tradable green certificates for renewable support: The role of expectations and uncertainty
,”
Energy
141
,
1717
1727
(
2017
).
26.
J.
Fu
,
A.
Núñez
, and
B.
De Schutter
, “
A bidding mechanism for maintenance of generation units considering inter-ISO power exchange
,”
Int. J. Electr. Power Energy Syst.
144
,
108595
(
2023
).
27.
S.
Dawn
and
S.
Gope
, “
Maximization of social welfare by enhancement of demand-side bidding in a deregulated power market
,” in
Soft Computing for Problem Solving
, edited by
J. C.
Bansal
,
K. N.
Das
,
A.
Nagar
,
K.
Deep
, and
A. K.
Ojha
(
Springer
,
Singapore
,
2019
), pp.
495
506
.
28.
L.
Chao-An
,
A. J.
Svoboda
,
G.
Xiaohong
, and
H.
Singh
, “
Revenue adequate bidding strategies in competitive electricity markets
,”
IEEE Trans. Power Syst.
14
(
2
),
492
497
(
1999
).
29.
K.
Singh
,
N. P.
Padhy
, and
J. D.
Sharma
, “
Social welfare maximization considering reactive power and congestion management in the deregulated environment
,”
Electr. Power Compon. Syst.
38
(
1
),
50
71
(
2009
).
30.
S.
Kumari Behera
and
N.
Kant Mohanty
, “
Social welfare maximization with thyristor-controlled series compensator using grey wolf optimization algorithm
,”
Int. J. Electr. Eng. Educ.
58
(
2
),
209
222
(
2021
).
31.
A. S.
Raturi
,
R. K.
Jarial
,
Y. R.
Sood
,
A.
Maheshwari
, and
S.
Jaiswal
, “
Social welfare maximization in deregulated power market incorporating wind power plants using metaheuristic algorithm
,”
Wind Eng.
48
,
257
274
(
2024
).
32.
S.
Dawn
and
P. K.
Tiwari
, “
Improvement of economic profit by optimal allocation of TCSC & UPFC with wind power generators in double auction competitive power market
,”
Int. J. Electr. Power Energy Syst.
80
,
190
201
(
2016
).
33.
S.
Dawn
,
S.
Gope
,
S. S.
Das
, and
T. S.
Ustun
, “
Social welfare maximization of competitive congested power market considering wind farm and pumped hydroelectric storage system
,”
Electronics
10
(
21
),
2611
(
2021
).
34.
M. A.
Taher
,
S.
Kamel
,
F.
Jurado
, and
M.
Ebeed
, “
An improved moth-flame optimization algorithm for solving optimal power flow problem
,”
Int. Trans. Electr. Energy Syst.
29
(
3
),
e2743
(
2019
).
35.
U.
Khaled
,
A. M.
Eltamaly
, and
A.
Beroual
, “
Optimal power flow using particle swarm optimization of renewable hybrid distributed generation
,”
Energies
10
(
7
),
1013
(
2017
).
36.
D.
Wang
,
D.
Tan
, and
L.
Liu
, “
Particle swarm optimization algorithm: An overview
,”
Soft Comput.
22
(
2
),
387
408
(
2018
).
37.
O.
Alsac
and
B.
Stott
, “
Optimal load flow with steady-state security
,”
IEEE Trans. Power Appar. Syst.
PAS-93
(
3
),
745
751
(
1974
).
You do not currently have access to this content.