Accurate solar radiation data are essential to optimize solar energy systems and assess their feasibility. In this study, we propose a site-adaptation procedure based on a machine learning model trained to enhance the accuracy of solar radiation data using a combination of the National Solar Radiation Database (NSRDB) and in situ data collected in southern Colombia. The NSRDB provides high temporal and spatial resolution data, while in situ data offer accurate localized measurements specific to the study area. Our machine learning models were trained to learn the relationships between NSRDB data and in situ meteorological station data. The results demonstrate promising predictive capabilities, with the extreme grading boosting model effectively reducing mean absolute error, while a neural network model trained with the triplet loss function proved effective in minimizing mean bias error (MBE) and improving correlation between model-adjusted and in situ collected data. These findings make significant contributions to the field of solar radiation prediction, highlighting the effectiveness of amalgamating NSRDB and in situ data for precise solar radiation estimation, and promote the advancement of solar energy system design and decision-making processes.

1.
X.
He
,
S.
Khan
,
I.
Ozturk
, and
M.
Murshed
, “
The role of renewable energy investment in tackling climate change concerns: Environmental policies for achieving SDG-13
,”
Sustainable Dev.
31
,
1888
1901
(
2023
).
2.
G.
Xiu-Yan
,
L.
Jie-Mei
,
Y.
Yuan
, and
T.
He-Ping
, “
Global horizontal irradiance prediction model considering the effect of aerosol optical depth based on the informer model
,”
Renewable Energy
220
,
119671
(
2024
).
3.
J. M.
Ramírez-Cuesta
,
D.
Vanella
,
S.
Consoli
,
A.
Motisi
, and
M.
Minacapilli
, “
A satellite stand-alone procedure for deriving net radiation by using SEVIRI and MODIS products
,”
Int. J. Appl. Earth Obs. Geoinformation
73
,
786
799
(
2018
).
4.
I.
Sarazola
,
A.
Laguarda
,
J. C.
Ceballos
, and
R.
Alonso-Suaárez
, “
Benchmarking of modeled solar irradiation data in Uruguay at a daily time scale
,”
IEEE Lat. Am. Trans.
21
,
1040
1048
(
2023
).
5.
S. K.
Mondal
,
S. K.
Hota
,
H. T. C.
Pedro
,
C. F. M.
Coimbra
,
E.
Leal-Quiros
, and
G.
Diaz
, “
Data-driven optimal placement of minichannel-based solar water heater using satellite-derived and ground-telemetry weather information
,”
J. Renewable Sustainable Energy
16
,
026301
(
2024
).
6.
M.
Sengupta
,
Y.
Xie
,
A.
Lopez
,
A.
Habte
,
G.
Maclaurin
, and
J.
Shelby
, “
The National Solar Radiation Data Base (NSRDB)
,”
Renewable Sustainable Energy Rev.
89
,
51
60
(
2018
).
7.
N. B.
Mohamad
,
A.-C.
Lai
, and
B.-H.
Lim
, “
A case study in the tropical region to evaluate univariate imputation methods for solar irradiance data with different weather types
,”
Sustainable Energy Technol. Assess.
50
,
101764
(
2022
).
8.
M.
Bellaoui
,
K.
Bouchouicha
, and
I.
Oulimar
, “
Estimation of daily global solar radiation based on MODIS satellite measurements: The case study of Adrar region (Algeria)
,”
Measurement
183
,
109802
(
2021
).
9.
H.
Verbois
,
Y.-M.
Saint-Drenan
,
Q.
Libois
,
Y.
Michel
,
M.
Cassas
,
L.
Dubus
, and
P.
Blanc
, “
Improvement of satellite-derived surface solar irradiance estimations using spatio-temporal extrapolation with statistical learning
,”
Sol. Energy
258
,
175
193
(
2023
).
10.
J.
Polo
,
C.
Fernández-Peruchena
,
V.
Salamalikis
,
L.
Mazorra-Aguiar
,
M.
Turpin
,
L.
Martín-Pomares
,
A.
Kazantzidis
,
P.
Blanc
, and
J.
Remund
, “
Benchmarking on improvement and site-adaptation techniques for modeled solar radiation datasets
,”
Sol. Energy
201
,
469
479
(
2020
).
11.
C. A.
Gueymard
, “
The sun's total and spectral irradiance for solar energy applications and solar radiation models
,”
Sol. Energy
76
,
423
453
(
2004
).
12.
G.
Narvaez
,
L. F.
Giraldo
,
M.
Bressan
, and
A.
Pantoja
, “
Machine learning for site-adaptation and solar radiation forecasting
,”
Renewable Energy
167
,
333
342
(
2021
).
13.
J.
Polo
,
S.
Wilbert
,
J. A.
Ruiz-Arias
,
R.
Meyer
,
C.
Gueymard
,
M.
Suri
,
L.
Martin
,
T.
Mieslinger
,
P.
Blanc
,
I.
Grant
et al, “
Preliminary survey on site-adaptation techniques for satellite-derived and reanalysis solar radiation datasets
,”
Sol. Energy
132
,
25
37
(
2016
).
14.
C.
Fernandez-Peruchena
,
J.
Polo
,
L.
Martin
, and
L.
Mazorra
, “
Site-adaptation of modeled solar radiation data: The SiteAdapt procedure
,”
Remote Sens.
12
,
2127
(
2020
).
15.
V.
Salamalikis
,
P.
Tzoumanikas
,
A.
Argiriou
, and
A.
Kazantzidis
, “
Site adaptation of global horizontal irradiance from the Copernicus Atmospheric Monitoring Service for radiation using supervised machine learning techniques
,”
Renewable Energy
195
,
92
106
(
2022
).
16.
Y.
Liu
,
L.
Li
, and
J.
Liu
, “
Enhancing short-term wind power forecasting accuracy for reliable and safe integration into power systems: A gray relational analysis and optimized support vector regression machine approach
,”
J. Renewable Sustainable Energy
16
,
013311
(
2024
).
17.
Y.
Zhou
,
Y.
Liu
,
D.
Wang
,
X.
Liu
, and
Y.
Wang
, “
A review on global solar radiation prediction with machine learning models in a comprehensive perspective
,”
Energy Convers. Manage.
235
,
113960
(
2021
).
18.
Ü.
Ağbulut
,
A. E.
Gürel
, and
Y.
Biçen
, “
Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison
,”
Renewable Sustainable Energy Rev.
135
,
110114
(
2021
).
19.
Q.
Liu
,
Y.
Chen
,
Y.
Liu
,
Y.
Lei
,
Y.
Wang
, and
P.
Hu
, “
A review and guide on selecting and optimizing machine learning algorithms for daylight prediction
,”
Build. Environ.
244
,
110822
(
2023
).
20.
D.-Y.
Kim
and
B.-S.
Kim
, “
Contribution of meteorological factors based on explainable artificial intelligence in predicting wind farm power production using machine learning algorithms
,”
J. Renewable Sustainable Energy
15
,
013307
(
2023
).
21.
S.
Zainali
,
D.
Yang
,
T.
Landelius
, and
P. E.
Campana
, “
Site adaptation with machine learning for a Northern Europe gridded global solar irradiance product
,”
Energy AI
15
,
100331
(
2024
).
22.
B. S.
Masabi
,
Z.
Aghashariatmadari
, and
S.
Hejabi
, “
Evaluation the efficiency of a parametric model based on MODIS data for solar radiation estimation in comparison with some empirical models
,”
Arabian J. Geosci.
14
,
1
13
(
2021
).
23.
E. F.
Dhata
,
C. K.
Kim
,
H.-G.
Kim
,
B.
Kim
, and
M.
Oh
, “
Site-adaptation for correcting satellite-derived solar irradiance: Performance comparison between various regressive and distribution mapping techniques for application in Daejeon, South Korea
,”
Energies
15
,
9010
(
2022
).
24.
M.-S.
Martín
,
P.-L.
Fernando
, and
T.
Francisco
, “
An empirical correction model for remote sensing data of global horizontal irradiance in high-cloudiness-index locations
,”
Remore Sens.
14
,
5496
(
2022
).
25.
O.
Guevara
,
M.
Abud
,
A. F.
Trujillo
,
C. F.
Suárez
,
L.
Cuadros
,
C.
López
, and
C.
Flórez
,
Plan Territorial de Adaptación Climática del departamento de Nariño
(
Corponariño y WWF-Colombia
,
Cali, Colombia
,
2016
).
26.
M. A.
Solarte-Cruz
et al,
Proyecto estado del arte de la información biofísica y socioeconómica de los páramos de Nariño, Tomo II. Características biofísicas de los páramos de Nariño
(
Corporación Autónoma Regional de Nariño-Corponariño, Grupo de investigación en biología de páramos y ecosistemas Andinos, Universidad de Nariño
,
Pasto
,
2007
).
27.
Plan de desarrollo departamental Mi Nariño en defensa de lo nuestro (
Gobernación de Nariño
,
Pasto
,
2020
).
28.
L.
Olatomiwa
,
S.
Mekhilef
,
S.
Shamshirband
,
K.
Mohammadi
,
D.
Petković
, and
C.
Sudheer
, “
A support vector machine–firefly algorithm-based model for global solar radiation prediction
,”
Sol. Energy
115
,
632
644
(
2015
).
29.
W.
Cao
,
Y.
Liu
,
H.
Mei
,
H.
Shang
, and
Y.
Yu
, “
Short-term district power load self-prediction based on improved XGBoost model
,”
Eng. Appl. Artif. Intell.
126
,
106826
(
2023
).
30.
I. H.
Sarker
, “
Machine learning: Algorithms, real-world applications and research directions
,”
SN Comput. Sci.
2
,
160
(
2021
).
31.
Z.
Deng
,
S. H.
Chan
,
Q.
Chen
,
H.
Liu
,
L.
Zhang
,
K.
Zhou
,
S.
Tong
, and
Z.
Fu
, “
Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system
,”
Appl. Energy
331
,
120385
(
2023
).
32.
J.
Li
,
L.
Pan
,
M.
Suvarna
,
Y. W.
Tong
, and
X.
Wang
, “
Fuel properties of hydrochar and pyrochar: Prediction and exploration with machine learning
,”
Appl. Energy
269
,
115166
(
2020
).
33.
T.
Chai
and
R.
Draxler
, “
Root-mean-square error (RMSE) or mean absolute error (MAE)?
,”
Geosci. Model Dev.
7
,
1525
1534
(
2014
).
You do not currently have access to this content.