Wind tunnel experiments were performed to quantify the coupling mechanisms between incoming wind flows, power output fluctuations, and unsteady tower aerodynamic loads of a model wind turbine under periodically oscillating wind environments across various yaw misalignment angles. A high-resolution load cell and a data logger at high temporal resolution were applied to quantify the aerodynamic loads and power output, and time-resolved particle image velocimetry system was used to characterize incoming and wake flow statistics. Results showed that due to the inertia of the turbine rotor, the time series of power output exhibits a distinctive phase lag compared to the incoming periodically oscillating wind flow, whereas the phase lag between unsteady aerodynamic loads and incoming winds was negligible. Reduced-order models based on the coupling between turbine properties and incoming periodic flow characteristics were derived to predict the fluctuation intensity of turbine power output and the associated phase lag, which exhibited reasonable agreement with experiments. Flow statistics demonstrated that under periodically oscillating wind environments, the growth of yaw misalignment could effectively mitigate the overall flow fluctuation in the wake region and significantly enhance the stream-wise wake velocity cross correlation intensities downstream of the turbine hub location.

1.
EIA
,
Electricity in the United States—Energy Explained, Your Guide to Understanding Energy
(
EIA
,
2019
). https://www.eia.gov/energyexplained/index.cfm?page=electricity_in_the_united_states.
2.
P. C.
Johnston
,
Climate Risk and Adaptation in the Electric Power Sector
(
Asian Development Bank
,
2012
).
3.
S. C.
Pryor
and
R. J.
Barthelmie
, “
Climate change impacts on wind energy: A review
,”
Renewable Sustain. Energy Rev.
14
(
1
),
430
437
(
2010
).
4.
D.
Carvalho
,
A.
Rocha
,
M.
Gómez-Gesteira
, and
C.
Silva Santos
, “
Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections
,”
Renewable Energy
101
,
29
40
(
2017
).
5.
P. S.
Veers
,
T. D.
Ashwill
,
H. J.
Sutherland
,
D. L.
Laird
,
D. W.
Lobitz
,
D. A.
Griffin
,
J. F.
Mandell
,
W. D.
Musial
,
K.
Jackson
,
M.
Zuteck
et al, “
Trends in the design, manufacture and evaluation of wind turbine blades
,”
Wind Energy
6
(
3
),
245
259
(
2003
).
6.
A. C.
Spassiani
and
M. S.
Mason
, “
Application of self-organizing maps to classify the meteorological origin of wind gusts in Australia
,”
J. Wind Eng. Ind. Aerodyn.
210
,
104529
(
2021
).
7.
S.
Cao
,
Y.
Tamura
,
N.
Kikuchi
,
M.
Saito
,
I.
Nakayama
, and
Y.
Matsuzaki
, “
A case study of gust factor of a strong typhoon
,”
J. Wind Eng. Ind. Aerodyn.
138
,
52
60
(
2015
).
8.
G.
Fang
,
L.
Zhao
,
S.
Cao
,
Y.
Ge
, and
K.
Li
, “
Gust characteristics of near-ground typhoon winds
,”
J. Wind Eng. Ind. Aerodyn.
188
,
323
337
(
2019
).
9.
M.
Pichault
,
C.
Vincent
,
G.
Skidmore
, and
J.
Monty
, “
Lidar-based detection of wind gusts: An experimental study of gust propagation speed and impact on wind power ramps
,”
J. Wind Eng. Ind. Aerodyn.
220
,
104864
(
2022
).
10.
E.
Branlard
, “
Wind energy: On the statistics of gusts and their propagation through a wind farm
,”
ECN Wind Memo
7
,
5
9
(
2009
).
11.
IEC ISO,
ISO/IEC 25010:2011
” (
2011
).
12.
S.
Fu
,
Y.
Jin
,
Y.
Zheng
, and
L. P.
Chamorro
, “
Wake and power fluctuations of a model wind turbine subjected to pitch and roll oscillations
,”
Appl. Energy
253
,
113605
(
2019
).
13.
S.
Cioni
,
F.
Papi
,
L.
Pagamonci
,
A.
Bianchini
,
N.
Ramos-García
,
G.
Pirrung
,
R.
Corniglion
,
A.
Lovera
,
J.
Galván
, and
R.
Boisard
, “
On the characteristics of the wake of a wind turbine undergoing large motions caused by a floating structure: An insight based on experiments and multi-fidelity simulations from the OC6 phase III project
,”
Wind Energy Sci. Discuss.
2023
,
1
37
.
14.
C. W.
Schulz
,
S.
Netzband
,
U.
Özinan
,
P. W.
Cheng
, and
M.
Abdel-Maksoud
, “
Wind turbine rotors in surge motion: New insights into unsteady aerodynamics of floating offshore wind turbines (FOWTs) from experiments and simulations
,”
Wind Energy Sci.
9
(
3
),
665
695
(
2024
).
15.
N. J.
Wei
and
J. O.
Dabiri
, “
Power-generation enhancements and upstream flow properties of turbines in unsteady inflow conditions
,”
J. Fluid Mech.
966
,
A30
(
2023
).
16.
N. J.
Wei
and
J. O.
Dabiri
, “
Phase-averaged dynamics of a periodically surging wind turbine
,”
J. Renewable Sustain. Energy
14
(
1
),
013305
(
2022
).
17.
K.
Zhou
,
N.
Cherukuru
,
X.
Sun
, and
R.
Calhoun
, “
Wind gust detection and impact prediction for wind turbines
,”
Remote Sens.
10
(
4
),
514
(
2018
).
18.
D. K.
Kwon
,
A.
Kareem
, and
K.
Butler
, “
Gust-front loading effects on wind turbine tower systems
,”
J. Wind Eng. Ind. Aerodyn.
104
,
109
115
(
2012
).
19.
V.
Pakrashi
,
K.
O'Sullivan
,
R.
O'Shea
, and
J.
Murphy
, “
Experimental responses of a monopile foundation with a wave energy converter attached
,” in
Proceedings of the Hydro 2013 International
, Chennai, India (
Indian Institute of Technology Madras
,
2013
).
20.
I.
Grant
,
P.
Parkin
, and
X.
Wang
, “
Optical vortex tracking studies of a horizontal axis wind turbine in yaw using laser-sheet, flow visualisation
,”
Exp. Fluids
23
(
6
),
513
519
(
1997
).
21.
I.
Grant
and
P.
Parkin
, “
A DPIV study of the trailing vortex elements from the blades of a horizontal axis wind turbine in yaw
,”
Exp. Fluids
28
(
4
),
368
376
(
2000
).
22.
M.
Bastankhah
and
F.
Porté-Agel
, “
Experimental and theoretical study of wind turbine wakes in yawed conditions
,”
J. Fluid Mech.
806
,
506
541
(
2016
).
23.
M. F.
Howland
,
J.
Bossuyt
,
L. A.
Martínez-Tossas
,
J.
Meyers
, and
C.
Meneveau
, “
Wake structure in actuator disk models of wind turbines in yaw under uniform inflow conditions
,”
J. Renewable Sustain. Energy
8
(
4
),
043301
(
2016
).
24.
M.
Churchfield
,
Q.
Wang
,
A.
Scholbrock
,
T.
Herges
,
T.
Mikkelsen
, and
M.
Sjöholm
, “
Using high-fidelity computational fluid dynamics to help design a wind turbine wake measurement experiment
,”
J. Phys.: Conf. Ser.
753
,
032009
(
2016
).
25.
J.
Wang
,
S.
Foley
,
E. M.
Nanos
,
T.
Yu
,
F.
Campagnolo
,
C. L.
Bottasso
,
A.
Zanotti
, and
A.
Croce
, “
Numerical and experimental study of wake redirection techniques in a boundary layer wind tunnel
,”
J. Phys.: Conf. Ser.
854
,
012048
(
2017
).
26.
C. R.
Shapiro
,
D. F.
Gayme
, and
C.
Meneveau
, “
Modelling yawed wind turbine wakes: A lifting line approach
,”
J. Fluid Mech.
841
,
R1
(
2018
).
27.
J.
Schottler
,
J.
Bartl
,
F.
Mühle
,
L.
Saetran
,
J.
Peinke
, and
M.
Hölling
, “
Wind tunnel experiments on wind turbine wakes in yaw: Redefining the wake width
,”
Wind Energy Sci.
3
(
1
),
257
273
(
2018
).
28.
M.
Bastankhah
and
F.
Porté-Agel
, “
Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine performance, and wake region
,”
Phys. Fluids
29
(
6
),
065105
(
2017
).
29.
M.
Bastankhah
and
F.
Porté-Agel
, “
A wind-tunnel investigation of wind-turbine wakes in yawed conditions
,”
J. Phys.: Conf. Ser.
625
,
012014
(
2015
).
30.
A.
Ozbay
,
W.
Tian
,
Z.
Yang
, and
H.
Hu
, “
Interference of wind turbines with different yaw angles of the upstream wind turbine
,” in
42nd AIAA Fluid Dynamics Conference and Exhibit
(
AIAA
,
2012
), p.
2719
.
31.
J.
Bartl
,
F.
Mühle
,
J.
Schottler
,
L.
Saetran
,
J.
Peinke
,
M.
Adaramola
, and
M.
Hölling
, “
Wind tunnel experiments on wind turbine wakes in yaw: Effects of inflow turbulence and shear
,”
Wind Energy Sci.
3
(
1
),
329
343
(
2018
).
32.
E. J.
Aju
,
D.
Bhamitipadi Suresh
, and
Y.
Jin
, “
The influence of winglet pitching on the performance of a model wind turbine: Aerodynamic loads, rotating speed, and wake statistics
,”
Energies
13
(
19
),
5199
(
2020
).
33.
M.
Bastankhah
and
F.
Porté-Agel
, “
A new miniature wind turbine for wind tunnel experiments. Part I: Design and performance
,”
Energies
10
(
7
),
908
(
2017
).
34.
H.
Liu
,
Y.
Jin
,
N.
Tobin
, and
L. P.
Chamorro
, “
Towards uncovering the structure of power fluctuations of wind farms
,”
Phys. Rev. E
96
(
6
),
063117
(
2017
).
35.
D.
Kumar
,
M. A.
Rotea
,
E.
Joseph Aju
, and
Y.
Jin
, “
Wind plant power maximization via extremum seeking yaw control: A wind tunnel experiment
,”
Wind Energy
26
(
3
),
283
309
(
2023
).
36.
P. A.
Brugger
,
C. D.
Markfort
, and
F.
Porté-Agel
, “
Field measurements of wake meandering at a utility-scale wind turbine with nacelle-mounted Doppler lidars
,”
Wind Energy Sci. Discuss.
2021
,
1
22
.
37.
M.
Lin
and
F.
Porté-Agel
, “
Wake meandering of wind turbines under dynamic yaw control and impacts on power and fatigue
,”
Renewable Energy
223
,
120003
(
2024
).
38.
A. S.
Wise
and
E. E.
Bachynski
, “
Wake meandering effects on floating wind turbines
,”
Wind Energy
23
(
5
),
1266
1285
(
2020
).
39.
H.
Canet
,
P.
Bortolotti
, and
C. L.
Bottasso
, “
On the scaling of wind turbine rotors
,”
Wind Energy Sci.
6
(
3
),
601
626
(
2021
).
40.
E.
Mohammadi
,
R.
Fadaeinedjad
, and
G.
Moschopoulos
, “
Implementation of internal model based control and individual pitch control to reduce fatigue loads and tower vibrations in wind turbines
,”
J. Sound Vib.
421
,
132
152
(
2018
).
41.
S.
Mancini
,
K.
Boorsma
,
G.
Schepers
, and
F.
Savenije
, “
A comparison of dynamic inflow models for the blade element momentum method
,”
Wind Energy Sci. Discuss.
2022
,
1
27
.
42.
N.
Tobin
,
H.
Zhu
, and
L. P.
Chamorro
, “
Spectral behaviour of the turbulence-driven power fluctuations of wind turbines
,”
J. Turbul.
16
(
9
),
832
846
(
2015
).
43.
H.
Zong
and
F.
Porté-Agel
, “
Experimental investigation and analytical modelling of active yaw control for wind farm power optimization
,”
Renewable Energy
170
,
1228
1244
(
2021
).
44.
E. J.
Aju
,
D.
Kumar
,
M.
Leffingwell
,
M. A.
Rotea
, and
Y.
Jin
, “
The influence of yaw misalignment on turbine power output fluctuations and unsteady aerodynamic loads within wind farms
,”
Renewable Energy
215
,
118894
(
2023
).
You do not currently have access to this content.