To meet the Biden-Harris administration's goal of deploying 30 GW of offshore wind power by 2030 and 110 GW by 2050, expansion of wind energy into U.S. territorial waters prone to tropical cyclones (TCs) and extratropical cyclones (ETCs) is essential. This requires a deeper understanding of cyclone-related risks and the development of robust, resilient offshore wind energy systems. This paper provides a comprehensive review of state-of-the-science measurement and modeling capabilities for studying TCs and ETCs, and their impacts across various spatial and temporal scales. We explore measurement capabilities for environments influenced by TCs and ETCs, including near-surface and vertical profiles of critical variables that characterize these cyclones. The capabilities and limitations of Earth system and mesoscale models are assessed for their effectiveness in capturing atmosphere–ocean–wave interactions that influence TC/ETC-induced risks under a changing climate. Additionally, we discuss microscale modeling capabilities designed to bridge scale gaps from the weather scale (a few kilometers) to the turbine scale (dozens to a few meters). We also review machine learning (ML)-based, data-driven models for simulating TC/ETC events at both weather and wind turbine scales. Special attention is given to extreme metocean conditions like extreme wind gusts, rapid wind direction changes, and high waves, which pose threats to offshore wind energy infrastructure. Finally, the paper outlines the research challenges and future directions needed to enhance the resilience and design of next-generation offshore wind turbines against extreme weather conditions.

1.
Aijaz
,
S.
,
Ghantous
,
M.
,
Babanin
,
A. V.
,
Ginis
,
I.
,
Thomas
,
B.
, and
Wake
,
G.
, “
Nonbreaking wave-induced mixing in upper ocean during tropical cyclones using coupled hurricane‐ocean‐wave modeling
,”
J. Geophysi. Res.
122
(
5
),
3939
3963
(
2017
).
2.
Alemany
,
S.
,
Beltran
,
J.
,
Perez
,
A.
, and
Ganzfried
,
S.
, “
Predicting hurricane trajectories using a recurrent neural network
,”
AAAI Conf. Artif. Intell.
33
,
468
475
(
2019
).
3.
Alessandrini
,
S.
,
Delle Monache
,
L.
,
Rozoff
,
C. M.
, and
Lewis
,
W. E.
, “
Probabilistic prediction of tropical cyclone intensity with an analog ensemble
,”
Mon. Weather Rev.
146
,
1723
1744
(
2018
).
4.
Altman
,
J.
,
Saurer
,
M.
,
Dolezal
,
J.
,
Maredova
,
N.
,
Song
,
J.-S.
,
Ho
,
C.-H.
, and
Treydte
,
K.
, “
Large volcanic eruptions reduce landfalling tropical cyclone activity: Evidence from tree rings
,”
Sci. Total Environ
775
,
145899
(
2021
).
5.
Andreas
,
E. L.
, “
An algorithm to predict the turbulent air-sea fluxes in high-wind, spray conditions
,” in
12th Conference on Interaction of Sea and Atmosphere
(
2003
).
6.
Andreas
,
E. L.
,
Mahrt
,
L.
, and
Vickers
,
D.
, “
A new drag relation for aerodynamically rough flow over the ocean
,”
J. Atmos. Sci.
69
(
8
),
2520
2537
(
2012
).
7.
Andreas
,
E. L.
,
Mahrt
,
L.
, and
Vickers
,
D.
, “
An improved bulk air-sea surface flux algorithm, including spray-mediated transfer
,”
Q. J. R. Meteorol. Soc.
141
(
687
),
642
654
(
2015
).
8.
Asfur
,
M.
,
Price
,
C.
,
Silverman
,
J.
, and
Wishkerman
,
J.
, “
Why is lightning more intense over the oceans?
J. Atmos. Sol.-Terr. Phys.
202
,
105259
(
2020
).
9.
Baatsen
,
M.
,
Haarsma
,
R. J.
,
Van Delden
,
A. J.
, and
De Vries
,
H.
, “
Severe autumn storms in future western Europe with a warmer Atlantic Ocean
,”
Clim. Dyn.
45
,
949
964
(
2015
).
10.
Babanin
,
A.
,
Breaking and Dissipation of Ocean Surface Waves
(
Cambridge University Press
,
2011
).
11.
Babanin
,
A. V.
, “
On a wave-induced turbulence and a wave-mixed upper ocean layer
,”
Geophys. Res. Lett.
33
(
20
),
1
6
, https://doi.org/10.1029/2006GL027308 (
2006
).
12.
Babanin
,
A. V.
and
Haus
,
B. K.
, “
On the existence of water turbulence induced by nonbreaking surface waves
,”
J. Phys. Oceanogr.
39
(
10
),
2675
2679
(
2009
).
13.
Bacmeister
,
J. T.
,
Wehner
,
M. F.
,
Neale
,
R. B.
,
Gettelman
,
A.
,
Hannay
,
C.
,
Lauritzen
,
P. H.
,
Caron
,
J. M.
, and
Truesdale
,
J. E.
, “
Exploratory high-resolution climate simulations using the community atmosphere model (CAM)
,”
J. Clim.
27
(
9
),
3073
3099
(
2014
).
14.
Baek
,
Y.-H.
,
Moon
,
I.-J.
,
Im
,
J.
, and
Lee
,
J.
, “
A novel tropical cyclone size estimation model based on a convolutional neural network using geostationary satellite imagery
,”
Remote Sens.
14
,
426
444
(
2022
).
15.
Balaguru
,
K.
,
Xu
,
W.
,
Chang
,
C. C.
,
Leung
,
L. R.
,
Judi
,
D. R.
,
Hagos
,
S. M.
,
Wehner
,
M. F.
,
Kossin
,
J. P.
, and
Ting
,
M.
, “
Increased U.S. coastal hurricane risk under climate change
,”
Sci. Adv.
9
(
14
),
eadf0259
(
2023
).
16.
Balaguru
,
K.
,
Leung
,
L. R.
,
Van Roekel
,
L. P.
,
Golaz
,
J. C.
,
Ullrich
,
P. A.
,
Caldwell
,
P. M.
,
Hagos
,
S. M.
,
Harrop
,
B. E.
, and
Mametjanov
,
A.
, “
Characterizing tropical cyclones in the energy exascale earth system model version 1
,”
J. Adv. Model. Earth Syst.
12
(
8
),
e2019MS002024
(
2020
).
17.
Bao
,
Y.
,
Song
,
Z.
, and
Qiao
,
F.
, “
FIO-ESM version 2.0: Model description and evaluation
,”
J. Geophys. Res.
125
(
6
),
e2019JC016036
, https://doi.org/10.1029/2019JC016036 (
2020
).
18.
Barthelmie
,
R. J.
,
Dantuono
,
K. E.
,
Renner
,
E. J.
,
Letson
,
F. L.
, and
Pryor
,
S. C.
, “
Extreme wind and waves in U.S. east coast offshore wind energy lease areas
,”
Energies
14
(
4
),
1053
(
2021
).
19.
Bender
,
M. A.
and
Ginis
,
I.
, “
Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity
,”
Mon. Weather Rev.
128
(
4
),
917
946
(
2000
).
20.
Bernardet
,
L.
,
Tallapragada
,
V.
,
Bao
,
S.
,
Trahan
,
S.
,
Kwon
,
Y.
,
Liu
,
Q.
,
Tong
,
M.
,
Biswas
,
M.
,
Brown
,
T.
,
Stark
,
D.
, and
Carson
,
L.
, “
Community support and transition of research to operations for the hurricane weather research and forecasting model
,”
Bull. Am. Meteorol. Soc.
96
(
6
),
953
960
(
2015
).
21.
Best
,
A. C.
, “
The size distribution of raindrops
,”
Meteorol. Soc
76
,
16
36
(
1950
).
22.
Bethel
,
B. J.
,
Sun
,
W.
,
Dong
,
C.
, and
Wang
,
D.
, “
Forecasting hurricane-forced significant wave heights using a long short-term memory network in the Caribbean Sea
,”
Ocean Sci.
18
,
419
436
(
2022
).
23.
Bhatia
,
K. T.
,
Vecchi
,
G. A.
,
Knutson
,
T. R.
,
Murakami
,
H.
,
Kossin
,
J.
,
Dixon
,
K. W.
, and
Whitlock
,
C. E.
, “
Recent increases in tropical cyclone intensification rates
,”
Nat. Commun.
10
(
1
),
635
(
2019
).
24.
Bi
,
K.
,
Xie
,
L.
,
Zhang
,
H.
et al, “
Accurate medium-range global weather forecasting with 3D neural networks
,”
Nature
619
,
533
538
(
2023
).
25.
Bloemendaal
,
N.
,
De Moel
,
H.
,
Muis
,
S.
,
Haigh
,
I. D.
, and
Aerts
,
J. C.
, “
Estimation of global tropical cyclone wind speed probabilities using the STORM dataset
,”
Sci. Data
7
(
1
),
1
11
(
2020
).
26.
Bloemendaal
,
N.
,
De Moel
,
H.
,
Martinez
,
A. B.
,
Muis
,
S.
,
Haigh
,
I. D.
,
van der Wiel
,
K.
,
Haarsma
,
R. J.
,
Ward
,
P. J.
,
Roberts
,
M. J.
,
Dullaart
,
J. C.
, and
Aerts
,
J. C.
, “
A globally consistent local-scale assessment of future tropical cyclone risk
,”
Sci. Adv.
8
(
17
),
eabm8438
(
2022
).
27.
Blumberg
,
A. F.
and
Mellor
,
G. L.
, “
A description of a three-dimensional coastal ocean circulation model
,” in
Three‐Dimensional Coastal Ocean Models
, Coastal and Estuarine Sciences series (Wiley,
1987
), Vol.
4
, pp.
1
16
.
28.
Booij
,
N.
,
Ris
,
R. C.
, and
Holthuijsen
,
L. H.
, “
A third-generation wave model for coastal regions 1. Model description and validation
,”
J. Geophys. Res.
104
(
C4
),
7649
7666
, https://doi.org/10.1029/98JC02622 (
1999
).
29.
Bose
,
R.
,
Pintar
,
A.
, and
Simju
,
E.
, “
A real time prediction methodology for hurricane evolution using LSTM recurrent neural networks
,”
Neural Comput. Appl.
34
,
17491
17505
(
2022
).
30.
Breivik
,
Ø.
,
Mogensen
,
K.
,
Bidlot
,
J.
,
Balmaseda
,
M. A.
, and
Janssen
,
P. A. E. M.
, “
Surface wave effects in the NEMO ocean model: Forced and coupled experiments
,”
J. Geophys. Res.
120
(
4
),
2973
2992
, https://doi.org/10.1002/2014JC010565 (
2015
).
31.
Bruneau
,
N.
,
Toumi
,
R.
, and
Wang
,
S.
, “
Impact of wave whitecapping on land falling tropical cyclones
,”
Sci. Rep.
8
(
1
),
1
11
(
2018
).
32.
Brus
,
S. R.
,
Wolfram
,
P. J.
,
Van Roekel
,
L. P.
, and
Meixner
,
J. D.
, “
Unstructured global to coastal wave modeling for the Energy Exascale Earth System Model using WAVEWATCH III version 6.07
,”
Geosci. Model Dev.
14
,
2917
2938
(
2021
).
33.
Bryan
,
G. H.
,
Worsnop
,
R. P.
,
Lundquist
,
J. K.
, and
Zhang
,
J. A.
, “
A simple method for simulating wind profiles in the boundary layer of tropical cyclones
,”
Boundary-Layer Meteorol.
162
,
475
502
(
2017
).
34.
Bucci
,
L. R.
,
O'Handley
,
C.
,
Emmitt
,
G. D.
,
Zhang
,
J. A.
,
Ryan
,
K.
, and
Atlas
,
R.
, “
Validation of an airborne Doppler wind Lidar in tropical cyclones
,”
Sensors
18
(
12
),
4288
(
2018
).
35.
Buchana
,
P.
and
McSharry
,
P. E.
, “
Windstorm risk assessment for offshore wind farms in the North Sea
,”
Wind Energy
22
,
1219
1229
(
2019
).
36.
Burchard
,
H.
, “
Simulating the wave-enhanced layer under breaking surface waves with two-equation turbulence models
,”
J. Phys. Oceanogr.
31
(
11
),
3133
3145
(
2001
).
37.
Caldwell
,
P. M.
,
Mametjanov
,
A.
,
Tang
,
Q.
,
Van Roekel
,
L. P.
,
Golaz
,
J. C.
,
Lin
,
W.
et al, “
The DOE E3SM coupled model version 1: Description and results at high resolution
,”
J. Adv. Model. Earth Syst.
11
(
12
),
4095
4146
(
2019
).
38.
Camargo
,
S. J.
, “
Global and regional aspects of tropical cyclone activity in the CMIP5 models
,”
J. Clim.
26
(
24
),
9880
9902
(
2013
).
39.
Camargo
,
S. J.
,
Giulivi
,
C. F.
,
Sobel
,
A. H.
,
Wing
,
A. A.
,
Kim
,
D.
,
Moon
,
Y.
et al, “
Characteristics of model tropical cyclone climatology and the large-scale environment
,”
J. Clim.
33
(
11
),
4463
4487
(
2020
).
40.
Cangialosi
,
J. P.
, see https://www.nhc.noaa.gov/verification/pdfs/Verification_2022.pdf for “
National hurricane center forecast verification report for 2022 hurricane season
” (
2023
).
41.
Cavaleri
,
L.
,
Fox-Kemper
,
B.
, and
Hemer
,
M.
, “
Wind waves in the coupled climate system
,”
Bull. Am. Meteorol. Soc.
93
(
11
),
1651
1661
(
2012
).
42.
Chand
,
S. S.
,
Walsh
,
K. J. E.
,
Camargo
,
S. J.
,
Kossin
,
J. P.
,
Tory
,
K. J.
,
Wehner
,
M. F.
et al, “
Declining tropical cyclone frequency under global warming
,”
Nat. Clim. Change
12
(
7
),
655
661
(
2022
).
43.
Charnock
,
H.
, “
Wind stress on a water surface
,”
Q. J. R. Meteorol. Soc.
81
(
350
),
639
640
(
1955
).
44.
Chauvin
,
F.
,
Pilon
,
R.
,
Palany
,
P.
, and
Belmadani
,
A.
, “
Future changes in Atlantic hurricanes with the rotated-stretched ARPEGE-Climat at very high resolution
,”
Clim. Dyn.
54
,
947
972
(
2020
).
45.
Chavas
,
D. R.
,
Lin
,
N.
, and
Emanuel
,
K.
, “
A model for the complete radial structure of the tropical cyclone wind field. Part I: Comparison with observed structure
,”
J. Atmos. Sci.
72
,
3647
3662
(
2015
).
46.
Chen
,
L.
,
Zhong
,
X.
,
Zhang
,
F.
,
Cheng
,
Y.
,
Xu
,
Y.
,
Qi
,
Y.
, and
Li
,
H.
, “
FuXi: A cascade machine learning forecasting system for 15-day global weather forecast
,”
npj Clim. Atmos. Sci.
6
(
1
),
190
(
2023
).
47.
Chen
,
B.-F.
,
Chen
,
B.
,
Lin
,
H. T.
, and
Elsberry
,
R. L.
, “
Estimating tropical cyclone intensity by satellite imagery utilizing convolutional neural networks
,”
Weather Forecast.
34
,
447
465
(
2019
).
48.
Chen
,
B.-F.
,
Kuo
,
Y.-T.
, and
Huang
,
T.-S.
, “
A deep learning ensemble approach for predicting tropical cyclone rapid intensification
,”
Atmos. Sci. Lett.
24
,
e1151
(
2023
).
49.
Chen
,
S. S.
,
Price
,
J. F.
,
Zhao
,
W.
,
Donelan
,
M. A.
, and
Walsh
,
E. J.
, “
The CBLAST-hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction
,”
Bull. Am. Meteorol. Soc.
88
(
3
),
311
318
(
2007
).
50.
Chen
,
S. S.
,
Zhao
,
W.
,
Donelan
,
M. A.
, and
Tolman
,
H. L.
, “
Directional wind–wave coupling in fully coupled atmosphere–wave–ocean models: Results from CBLAST-Hurricane
,”
J. Atmos. Sci.
70
(
10
),
3198
3215
(
2013
).
51.
Chen
,
Y
. and Yu
,
X.
, “
Enhancement of wind stress evaluation method under storm conditions
,”
Climate Dynam.
47
,
3833
3843
(
2016
).
52.
Chen
,
S. S
. and Curcic
,
M.
, “
Coupled modeling and observations of ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012)
,”
Ocean Modeling
(
2016
).
103
,
161
173
.
53.
Chen
,
S.-T.
, “
Probabilistic forecasting of coastal wave height during typhoon warning period using machine learning methods
,”
Hydroinformatics
21
,
343
358
(
2019
).
54.
Chen
,
X.
and
Xu
,
J.-Z.
, “
Structural failure analysis of wind turbines impacted by super typhoon Usagi
,”
Eng. Failure Anal.
60
,
391
404
(
2016
).
55.
Chen
,
Y.
and
Yu
,
X.
, “
Sensitivity of storm wave modeling to wind stress evaluation methods
,”
J. Adv. Model. Earth Syst.
9
(
2
),
893
907
(
2017
).
56.
Chen
,
X.
,
Bryan
,
G. H.
,
Zhang
,
J. A.
,
Cione
,
J. J.
, and
Marks
,
F. D.
, “
A framework for simulating the tropical cyclone boundary layer using large-eddy simulation and its use in evaluating PBL parameterizations
,”
J. Atmos. Sci.
78
,
3559
3574
(
2021
).
57.
Cheung
,
H. M.
,
Ho
,
C.-H.
, and
Chang
,
M.
, “
Hybrid neural network models for postprocessing medium-range forecasts of tropical cyclone tracks over the Western North Pacific
,”
Artif. Intell. Earth Syst.
1
,
e210003
(
2022
).
58.
Cloud
,
K. A.
,
Reich
,
B. J.
,
Rozoff
,
C. M.
,
Alessandrini
,
S.
,
Lewis
,
W. E.
, and
Delle Monache
,
L.
, “
A feed forward neural network based on model output statistics for short-term hurricane intensity prediction
,”
Weather Forecast.
34
,
985
997
(
2019
).
59.
Colle
,
B. A.
,
Zhang
,
Z.
,
Lombardo
,
K. A.
,
Chang
,
E.
,
Liu
,
P.
, and
Zhang
,
M.
, “
Historical evaluation and future prediction of eastern North American and Western Atlantic extratropical cyclones in the CMIP5 models during the cool season
,”
J. Clim.
26
(
18
),
6882
6903
(
2013
).
60.
Craig
,
A.
,
Valcke
,
S.
, and
Coquart
,
L.
, “
Development and performance of a new version of the OASIS coupler. OASIS3-MCT-3.0
,”
Geosci. Model Dev.
10
(
9
),
3297
3308
(
2017
).
61.
Craig
,
P. D.
and
Banner
,
M. L.
, “
Modeling wave-enhanced turbulence in the ocean surface layer
,”
J. Phys. Oceanogr.
24
(
12
),
2546
2559
(
1994
).
62.
D'Alessio
,
S. J. D.
,
Abdella
,
K.
, and
McFarlane
,
N. A.
, “
A new second-order turbulence closure scheme for modeling the oceanic mixed layer
,”
J. Phys. Oceanogr.
28
(
8
),
1624
1641
(
1998
).
63.
Davis
,
C.
,
Wang
,
W.
,
Chen
,
S. S.
,
Chen
,
Y.
,
Corbosiero
,
K.
,
DeMaria
,
M.
,
Dudhia
,
J.
,
Holland
,
G.
,
Klemp
,
J.
,
Michalakes
,
J.
,
Reeves
,
H.
,
Rotunno
,
R.
,
Synder
,
C.
, and
Xiao
,
Q.
, “
Prediction of landfalling hurricanes with the advanced hurricane WRF model
,”
Mon. Weather Rev.
136
(
6
),
1990
2005
(
2008
).
64.
Dettling
,
S. M.
,
Brummet
,
T.
,
Gagne
,
D. J.
,
Kosovic
,
B.
,
Haupt
,
S. E.
, and
Hawbecker
,
P.
, “
Downscaling from mesoscale to microscale in complex terrain using a generative adversarial network
,” in
102nd American Meteorological Society Annual Meeting
, Jan 25 (
AMS
,
2022
).
65.
Diamond
,
K. E.
, “
Extreme weather impacts on offshore wind turbines: Lessons learned
,”
Nat. Resour. Environ.
27
,
37
(
2012
).
66.
Domala
,
V.
,
Lee
,
W.
, and
Kim
,
T.-W.
, “
Wave data prediction with optimized machine learning and deep learning techniques
,”
J. Comput. Des. Eng.
9
,
1107
1122
(
2022
).
67.
Donelan
,
M. A.
, “
On the limiting aerodynamic roughness of the ocean in very strong winds
,”
Geophys. Res. Lett.
31
(
18
),
L18306
, https://doi.org/10.1029/2004GL019460 (
2004
).
68.
Dong
,
C.
,
Loy
,
C. C.
,
He
,
K.
, and
Tang
,
X.
, “
Learning a deep convolutional network for image super-resolution
,” in
European Conference on Computer Vision
(
Springer
,
2014
), pp.
184
199
.
69.
Dong
,
L.
and
Zhang
,
F.
, “
OBEST: An observation-based ensemble subsetting technique for tropical cyclone track prediction
,”
Weather Forecast.
31
,
57
70
(
2016
).
70.
Drennan
,
W. M.
,
Graber
,
H. C.
,
Hauser
,
D.
, and
Quentin
,
C.
, “
On the wave age dependence of wind stress over pure wind seas
,”
J. Geophys. Res.
108
(
C3
),
8062
, https://doi.org/10.1029/2000JC000715 (
2003
).
71.
Drennan
,
W. M.
,
Taylor
,
P. K.
, and
Yelland
,
M. J.
, “
Parameterizing the sea surface roughness
,”
J. Phys. Oceanogr.
35
(
5
),
835
848
(
2005
).
72.
Du
,
J.
,
Bolaños
,
R.
, and
Guo Larsén
,
X.
, “
The use of a wave boundary layer model in SWAN
,”
J. Geophys. Res.
122
(
1
),
42
62
, https://doi.org/10.1002/2016JC012104 (
2017
).
73.
Du
,
J.
,
Larsén
,
X. G.
,
Chen
,
S.
,
Bolaños
,
R.
,
Badger
,
M.
, and
Yang
,
Y.
, “
The impact of wind–wave coupling with WBLM on coastal storm simulations
,”
Ocean Modell.
180
,
102135
(
2022
).
74.
Dyer
,
A. S.
,
Zaengle
,
D.
,
Nelson
,
J. R.
,
Duran
,
R.
,
Wenzlick
,
M.
,
Wingo
,
P. C.
,
Bauer
,
J. R.
,
Rose
,
K.
, and
Romeo
,
L.
, “
Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks
,”
Mar. Struct.
83
,
103152
(
2021
).
75.
Edwards
,
R.
and
Mosier
,
R. M.
, “
Over a quarter century of TCTOR: Tropical cyclone tornadoes in the WSR-88D ERA
,” in
30th Conference on Severe Local Storms
, Santa Fe, NM (
American Meteorological Society
,
2022
),
P171
.
76.
Elsner
,
J. B.
, “
Continued increases in the intensity of strong tropical cyclones
,”
Bull. Am. Meteorol. Soc.
101
,
E1301
E1303
(
2020
).
77.
Emanuel
,
K.
, “
Response of global tropical cyclone activity to increasing CO2: Results from downscaling CMIP6 models
,”
J. Clim.
34
(
1
),
57
70
(
2021
).
78.
Emanuel
,
K.
,
Sundararajan
,
R.
, and
Williams
,
J.
, “
Hurricanes and global warming: Results from downscaling IPCC AR4 simulations
,”
Bull. Amer. Meteor. Soc.
89
,
347
368
(
2008
).
79.
Emanuel
,
K.
, “
Climate and tropical cyclone activity: A new model downscaling approach
,”
J. Clim.
19
(
19
),
4797
4802
(
2006
).
80.
Emanuel
,
K. A.
,
Ravela
,
S.
,
Vivant
,
E.
, and
Risi
,
C.
, “
A statistical-deterministic approach to hurricane risk assessment
,”
Bull. Am. Meteor. Soc.
87
,
299
314
(
2006
).
81.
Emanuel
,
K.
, “
Evidence that hurricanes are getting stronger
,”
Proc. Natl. Acad. Sci.
117
,
13194
13195
(
2020
).
82.
Evans
,
C.
et al, “
The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts
,”
Mon. Weather Rev.
145
,
4317
4344
(
2017
).
83.
Fairall
,
C. W.
,
Kepert
,
J. D.
, and
Holland
,
G. J.
, “
The effect of sea spray on surface energy transports over the ocean
,”
Global Atmos. Ocean Syst.
2
,
121
142
(
1994
).
84.
Fan
,
Y.
and
Griffies
,
S. M.
, “
Impacts of parameterized Langmuir turbulence and nonbreaking wave mixing in global climate simulations
,”
J. Clim.
27
(
12
),
4752
4775
(
2014
).
85.
Foster
,
R. C.
, “
Why rolls are prevalent in the hurricane boundary layer
,”
J. Atmos. Sci.
62
,
2647
2661
(
2005
).
86.
Fowle
,
M. A.
and
Roebber
,
P. J.
, “
Short-range (0–48 h) numerical prediction of convective occurrence, mode, and location
,”
Weather Forecast.
18
(
5
),
782
794
(
2003
).
87.
Gall
,
R.
,
Tuttle
,
J.
, and
Hildebrand
,
P.
, “
Small-scale spiral bands observed in hurricanes Andrew, Hugo, and Erin
,”
Mon. Weather Rev.
126
(
7
),
1749
1766
(
1998
).
88.
Gao
,
S.
,
Zhao
,
P.
,
Pan
,
B.
,
Li
,
Y.
,
Zhou
,
M.
,
Xu
,
J.
,
Zhong
,
S.
, and
Shi
,
Z.
, “
A nowcasting model for the prediction of typhoon tracks based on a long short term memory neural network
,”
Acta. Oceanog. Sin.
37
,
8
12
(
2018
).
89.
Gao
,
D.
,
Pan
,
X.
,
Liang
,
B.
,
Yang
,
B.
,
Wu
,
G.
, and
Wang
,
Z.
, “
A review and design principle of fixed-bottom foundation scour protection schemes for offshore wind energy
,”
J. Mar. Sci. Eng.
12
(
4
),
660
(
2024
).
90.
Garolera
,
A. C.
,
Madsen
,
S. F.
,
Nissim
,
M.
,
Myers
,
J. D.
, and
Hollboell
,
J.
, “
Lightning damage to wind turbine blades from wind farms in the U.S
,”
IEEE Trans. Power Delivery
31
(
3
),
1043
1049
(
2016
).
91.
Ghantous
,
M.
and
Babanin
,
A. V.
, “
One-dimensional modelling of upper ocean mixing by turbulence due to wave orbital motion
,”
Nonlinear Processes Geophys.
21
(
1
),
325
338
(
2014
).
92.
Giffard-Roisin
,
S.
,
Yang
,
M.
,
Charpiat
,
G.
,
Kumler Bonfanti
,
C.
,
Kegl
,
B.
, and
Monteleoni
,
C.
, “
Tropical cyclone track forecasting using fused deep learning from aligned reanalysis data
,”
Front. Big Data
3
,
1
(
2020
).
93.
Golaz
,
J. C.
,
Caldwell
,
P. M.
,
Van Roekel
,
L. P.
,
Petersen
,
M. R.
,
Tang
,
Q.
,
Wolfe
,
J. D.
et al, “
The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution
,”
J. Adv. Model. Earth Syst.
11
(
7
),
2089
2129
(
2019
).
94.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
, “
Generative adversarial nets
,” in
Advances in Neural Information Processing Systems 27 (NIPS 2014)
(
2014
).
95.
Gopalakrishnan
,
S. G.
,
Goldenberg
,
S.
,
Quirino
,
T.
,
Zhang
,
X.
,
Marks
,
F.
,
Yeh
,
K. S.
,
Atlas
,
R.
, and
Tallapragada
,
V.
, “
Toward improving high-resolution numerical hurricane forecasting: Influence of model horizontal grid resolution, initialization, and physics
,”
Weather Forecast.
27
(
3
),
647
666
(
2012
).
96.
Gray
,
W. M.
, “
Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences
,”
Mon. Weather Rev.
112
,
1649
1668
(
1984
).
97.
Griffin
,
S. M.
,
Wimmers
,
A.
, and
Velden
,
C. S.
, “
Predicting rapid intensification in North Atlantic and Eastern North Pacific tropical cyclones using a convolutional neural network
,”
Weather Forecast.
37
,
1333
1355
(
2022
).
98.
Gurung
,
I.
,
Ramsubhramanian
,
M.
,
Freitag
,
B.
,
Kaulfus
,
A.
,
Maskey
,
M.
,
Ramachandran
,
R.
, and
Alemohammad
,
H.
, “
Tropical cyclone wind speed estimation: A large scale training data set and community benchmarking
,”
Earth Space Sci.
10
,
e2022EA002693
(
2023
).
99.
Haarsma
,
R. J.
,
Hazeleger
,
W.
,
Severijns
,
C.
,
De Vries
,
H.
,
Sterl
,
A.
,
Bintanja
,
R.
,
Van Oldenborgh
,
G. J.
, and
Van Den Brink
,
H. W.
, “
More hurricanes to hit western Europe due to global warming
,”
Geophys. Res. Lett.
40
(
9
),
1783
1788
, https://doi.org/10.1002/grl.50360 (
2013
).
100.
Haarsma
,
R. J.
,
Roberts
,
M. J.
,
Vidale
,
P. L.
,
Catherine
,
A.
,
Bellucci
,
A.
,
Bao
,
Q.
et al, “
High resolution model intercomparison project (HighResMIP v1.0) for CMIP6
,”
Geosci. Model Dev.
9
(
11
),
4185
4208
(
2016
).
101.
Haidvogel
,
D. B.
,
Arango
,
H.
,
Budgell
,
W. P.
,
Cornuelle
,
B. D.
,
Curchitser
,
E.
,
Di Lorenzo
,
E.
,
Fennel
,
K.
,
Geyer
,
W. R.
,
Hermann
,
A. J.
,
Lanerolle
,
L.
,
Levin
,
J.
,
McWilliams
,
J. C.
,
Miller
,
A. J.
,
Moore
,
A. M.
,
Powell
,
T. M.
,
Shchepetkin
,
A. F.
,
Sherwood
,
C. R.
,
Signell
,
R. P.
,
Warner
,
J. C.
, and
Wilkin
,
J.
, “
Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System
,”
J. Comput. Phys.
227
(
7
),
3595
3624
(
2008
).
102.
Hallowell
,
S. T.
,
Myers
,
A. T.
,
Arwade
,
S. R.
,
Pang
,
W.
,
Rawal
,
P.
,
Hines
,
E. M.
et al, “
Hurricane risk assessment of offshore wind turbines
,”
Renewable Energy
125
,
234
249
(
2018
).
103.
Haupt
,
S. E.
,
Chapman
,
W.
,
Adams
,
S. V.
,
Kirkwood
,
C.
,
Hosking
,
J. S.
,
Robinson
,
N. H.
,
Lerch
,
S.
, and
Subramanian
,
A. C.
, “
Towards implementing artificial intelligence post-processing in weather and climate: Proposed actions from the Oxford 2019 workshop
,”
Philos. Trans. R. Soc. A
379
(
2194
),
20200091
(
2021
).
104.
He
,
J. Y.
,
Chan
,
P. W.
,
Li
,
Q. S.
,
Li
,
L.
,
Zhang
,
L.
, and
Yang
,
H. L.
, “
Observations of wind and turbulence structures of Super Typhoons Hato and Mangkhut over land from a 356 m high meteorological tower
,”
Atmos. Res.
265
,
105910
(
2022
).
105.
Herndon
,
D.
and
Langlade
,
S.
, see https://community.wmo.int/en/iwtc-10-reports for “
Topic 1: Remote sensing for tropical cyclone analysis
” (
2022
).
106.
Herring
,
R.
,
Dyer
,
K.
,
Howkins
,
P.
, and
Ward
,
C.
, “
Characterisation of the offshore precipitation environment to help combat leading edge erosion of wind turbine blades
,”
Wind Energy Sci.
5
,
1399
1409
(
2020
).
107.
Hersbach
,
H.
,
Bell
,
B.
,
Berrisford
,
P.
,
Hirahara
,
S.
,
Horányi
,
A.
,
Muñoz‐Sabater
,
J.
,
Nicolas
,
J.
,
Peubey
,
C.
,
Radu
,
R.
,
Schepers
,
D.
, and
Simmons
,
A.
, “
The ERA5 global reanalysis
,”
Q. J. R. Meteorol. Soc.
146
(
730
),
1999
2049
(
2020
).
108.
Hoarau
,
T.
,
Barthe
,
C.
,
Tulet
,
P.
,
Claeys
,
M.
,
Pinty
,
J. P.
,
Bousquet
,
O.
et al, “
Impact of the generation and activation of sea salt aerosols on the evolution of tropical cyclone Dumile
,”
J. Geophys. Res.
123
(
16
),
8813
8831
, https://doi.org/10.1029/2017JD028125 (
2018
).
109.
Holbach
,
H. M.
,
Bousquet
,
O.
,
Bucci
,
L.
,
Chang
,
P.
,
Cione
,
J.
,
Ditchek
,
S.
,
Doyle
,
J.
,
Duvel
,
J. P.
,
Elston
,
J.
,
Goni
,
G.
, and
Hon
,
K. K.
, “
Recent advancements in aircraft and in situ observations of tropical cyclones
,”
Trop. Cyclone Res. Rev.
12
(
2
),
81
99
(
2023
).
110.
Holbach
,
H.
and
Bousquet
,
O.
, see https://community.wmo.int/en/iwtc-10-reports for “
Topic 1.3: Advancements in aircraft and in-situ observations of tropical cyclones
” (
2022
).
111.
Holzworth
,
R. H.
,
McCarthy
,
M. P.
,
Brundell
,
J. B.
,
Jacobson
,
A. R.
, and
Rodger
,
C. J.
, “
Global distribution of superbolts
,”
J. Geophys. Res.
124
(
17–18
),
9996
10005
, https://doi.org/10.1029/2019JD030975 (
2019
).
112.
Hsu
,
T.-Y.
,
Shiao
,
S.-Y.
, and
Liao
,
W.-I.
, “
Damage detection of rotating wind turbine blades using local flexibility method and long-gauge fiber Bragg grating sensors
,”
Meas. Sci. Technol.
29
(
1
),
2018
(
2018
).
113.
Huang
,
C. J.
,
Qiao
,
F.
,
Song
,
Z.
, and
Ezer
,
T.
, “
Improving simulations of the upper ocean by inclusion of surface waves in the Mellor-Yamada turbulence scheme
,”
J. Geophys. Res.
116
(
C1
),
C01007
, https://doi.org/10.1029/2010JC006320 (
2011
).
114.
Huang
,
L.
,
Li
,
X.
,
Liu
,
B.
,
Zhang
,
J. A.
,
Shen
,
D.
,
Zhang
,
Z.
, and
Yu
,
W.
, “
Tropical cyclone boundary layer rolls in synthetic aperture radar imagery
,”
J. Geophys. Res.
123
(
4
),
2981
2996
, https://doi.org/10.1029/2018JC013755 (
2018
).
115.
Huang
,
Y.
and
Jin
,
L.
, “
A prediction scheme with genetic neural network and Isomap algorithm for tropical cyclone intensity change over western North Pacific
,”
Meteorol. Atmos. Phys.
121
,
143
152
(
2013
).
116.
IEC
, “
Wind turbines—Part 3: Design requirements for offshore wind turbines
,” No. IEC 61400-3-1:2019,
2019
.
117.
Ikuyajolu
,
O. J.
,
Van Roekel
,
L.
,
Brus
,
S. R.
,
Thomas
,
E. E.
,
Deng
,
Y.
, and
Benedict
,
J. J.
, “
Effects of surface turbulence flux parameterizations on the MJO: The role of ocean surface waves
,”
J. Clim.
37
(
10
),
3011
3036
(
2024
).
118.
Ikuyajolu
,
O. J.
,
Van Roekel
,
L.
,
Brus
,
S. R.
,
Thomas
,
E. E.
,
Deng
,
Y.
, and
Sreepathi
,
S.
, “
Porting the WAVEWATCH III (v6.07) wave action source terms to GPU
,”
Geosci. Model Dev.
16
(
4
),
1445
1458
(
2023
).
119.
Ito
,
J.
,
Oizume
,
T.
, and
Niino
,
H.
, “
Near-surface coherent structures explored by large eddy simulation of entire tropical cyclones
,”
Sci. Rep.
7
,
3798
(
2017
).
120.
Jacob
,
R.
,
Larson
,
J.
, and
Ong
,
E.
, “
M × N communication and parallel interpolation in community climate system model version 3 using the model coupling toolkit
,”
Int. J. High Perform. Comput. Appl.
19
(
3
),
293
307
(
2005
).
121.
Janssen
,
P. A. E. M.
, “
Wave-induced stress and the drag of air flow over sea waves
,”
J. Phys. Oceanogr.
19
(
6
),
745
754
(
1989
).
122.
Janssen
,
P. A. E. M.
, “
Quasi-linear theory of wind-wave generation applied to wave forecasting
,”
J. Phys. Oceanogr.
21
(
11
),
1631
1642
(
1991
).
123.
Jiang
,
S.
,
Fan
,
H.
, and
Wang
,
C.
, “
Improvement of typhoon intensity forecasting by using a novel spatio-temporal deep learning model
,”
Remote Sens.
14
,
5205
(
2022
).
124.
Jones
,
S. C.
,
Harr
,
P. A.
,
Abraham
,
J.
,
Bosart
,
L. F.
,
Bowyer
,
P. J.
,
Evans
,
J. L.
et al, “
The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions
,”
Weather Forecast.
18
(
6
),
1052
1092
(
2003
).
125.
Julian
,
P. R.
and
Chervin
,
R. M.
, “
A study of the southern oscillation and Walker circulation phenomenon
,”
Mon. Weather Rev.
106
,
1433
1451
(
1978
).
126.
Jung
,
C.
and
Lackmann
,
G. M.
, “
Extratropical transition of Hurricane Irene (2011) in a changing climate
,”
J. Clim.
32
,
4847
4871
(
2019
).
127.
Jung
,
C.
and
Lackmann
,
G. M.
, “
The response of extratropical transition of tropical cyclones to climate change: Quasi-idealized numerical experiments
,”
J. Clim.
34
,
4361
4381
(
2021
).
128.
Jung
,
C.
and
Lackmann
,
G. M.
, “
Changes in tropical cyclones undergoing extratropical transition in a warming climate: Quasi-idealized numerical experiments of North Atlantic landfalling events
,”
Geophys. Res. Lett.
50
,
e2022GL101963
, https://doi.org/10.1029/2022GL101963 (
2023
).
129.
Kantha
,
L. H.
and
Clayson
,
C. A.
, “
An improved mixed layer model for geophysical applications
,”
J. Geophys. Res.
99
(
C12
),
25235
, https://doi.org/10.1029/94JC02257 (
1994
).
130.
Kapoor
,
A.
,
Ouakka
,
S.
,
Arwade
,
S. R.
,
Lundquist
,
J. K.
,
Lackner
,
M. A.
,
Myers
,
A. T.
,
Worsnop
,
R. P.
, and
Bryan
,
G. H.
, “
Hurricane eyewall winds and structural response of wind turbines
,”
Wind Energy Sci.
5
,
89
104
(
2020
).
131.
Kim
,
E.
and
Manuel
,
L.
, “
Hurricane risk assessment for offshore wind plants
,”
Wind Eng.
40
(
3
),
261
269
(
2016
).
132.
Kim
,
H. S.
,
Vecchi
,
G. A.
,
Knutson
,
T. R.
,
Anderson
,
W. G.
,
Delworth
,
T. L.
,
Rosati
,
A.
,
Zeng
,
F.
, and
Zhao
,
M.
, “
Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate model
,”
J. Clim.
27
(
21
),
8034
8054
(
2014
).
133.
Kiran
,
P. V.
and
Balaji
,
C.
, “
The future projection of cyclones in Bay of Bengal: A study using coupled ocean atmosphere model
,”
Ocean Dyn.
72
,
641
660
(
2022
).
134.
Klotzbach
,
P. J.
,
Wood
,
K. M.
,
Schreck
,
C. J.
III
,
Bowen
,
S. G.
,
Patricola
,
C. M.
, and
Bell
,
M. M.
, “
Trends in global tropical cyclone activity: 1990–2021
,”
Geophys. Res. Lett
49
,
e2021GL095774
, https://doi.org/10.1029/2021GL095774 (
2022
).
135.
Knutson
,
T.
,
Camargo
,
S. J.
,
Chan
,
J. C.
,
Emanuel
,
K.
,
Ho
,
C. H.
,
Kossin
,
J.
et al, “
Tropical cyclones and climate change assessment
,”
Bull. Am. Meteorol. Soc.
101
(
3
),
E303
E322
(
2020
).
136.
Knutson
,
T. R.
,
Sirutis
,
J. J.
,
Garner
,
S. T.
,
Held
,
I. M.
, and
Tuleya
,
R. E.
, “
Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model
,”
Bull. Am. Meteorol. Soc.
88
(
10
),
1549
1565
(
2007
).
137.
Kordmahalleh
,
M. M.
,
Sefidmazgi
,
M. G.
, and
Homaifar
,
A.
, “
A sparse recurrent neural network for trajectory prediction of Atlantic hurricanes
,” in
Proceedings of the Genetic and Evolutionary Computation Conference
(
2016
).
138.
Kossin
,
J. P.
, “
A global slowdown of tropical-cyclone translation speed
,”
Nature
558
(
7708
),
104
107
(
2018
).
139.
Kossin
,
J. P.
,
Knapp
,
K. R.
,
Olander
,
T. L.
, and
Velden
,
C. S.
, “
Global increase in major tropical cyclone exceedance probability over the past four decades
,”
Proc. Natl. Acad. Sci.
117
,
11975
11980
(
2020
).
140.
Krishnamurti
,
T. N.
and
Bhalme
,
H. N.
, “
Oscillations of a monsoon system. Part I. Observational aspects
,”
J. Atmos. Sci.
33
,
1937
1954
(
1976
).
141.
Kumar
,
S.
,
Dube
,
A.
,
Ashrit
,
R.
, and
Mitra
,
A. K.
, “
A machine learning (ML)-based approach to improve tropical cyclone intensity prediction of NCMRWF ensemble prediction system
,”
Pure Appl. Geophys.
180
(
1
),
261
275
(
2023
).
142.
Kurinchi-Vendhan
,
R.
, see https://rupakv.com/pdfs/wirediff_report.pdf for “
WiREDiff: A wind resolution-enhancing diffusion model
” (
2023
).
143.
Lam
,
R.
,
Sanchez-Gonzalez
,
A.
,
Willson
,
M.
,
Wirnsberger
,
P.
,
Fortunato
,
M.
,
Alet
,
F.
,
Ravuri
,
S.
,
Ewalds
,
T.
,
Eaton-Rosen
,
Z.
,
Hu
,
W.
, and
Merose
,
A.
, “
Learning skillful medium-range global weather forecasting
,”
Science
382
(
6677
),
1416
1421
(
2023
).
144.
Lane
,
E. M.
,
Restrepo
,
J. M.
, and
McWilliams
,
J. C.
, “
Wave–current interaction: A comparison of radiation-stress and vortex-force
,”
J. Phys. Oceanogr.
37
,
1122
1141
(
2007
).
145.
Large
,
W. G.
and
Pond
,
S.
, “
Open ocean momentum flux measurements in moderate to strong winds
,”
J. Phys. Oceanogr.
11
(
3
),
324
336
(
1981
).
146.
Larson
,
J.
,
Jacob
,
R.
, and
Ong
,
E.
, “
The model coupling toolkit: A new Fortran90 toolkit for building multiphysics parallel coupled models
,”
Int. J. High Perform. Comput. Appl.
19
(
3
),
277
292
(
2005
).
147.
Larsén
,
X. G.
,
Du
,
J.
,
Bolaños
,
R.
,
Imberger
,
M.
,
Kelly
,
M. C.
,
Badger
,
M.
, and
Larsen
,
S.
, “
Estimation of offshore extreme wind from wind-wave coupled modeling
,”
Wind Energy
22
(
8
),
1043
1057
(
2019
).
148.
Law Chune
,
S.
and
Aouf
,
L.
, “
Wave effects in global ocean modeling: Parametrizations vs. forcing from a wave model
,”
Ocean Dyn.
68
(
12
),
1739
1758
(
2018
).
149.
Ledig
,
C.
,
Theis
,
L.
,
Huszár
,
F.
,
Caballero
,
J.
,
Cunningham
,
A.
,
Acosta
,
A.
,
Aitken
,
A.
,
Tejani
,
A.
,
Totz
,
J.
,
Wang
,
Z.
, and
Shi
,
W.
, “
Photo-realistic single image super-resolution using a generative adversarial network
,” in
IEEE Conference on Computer Vision and Pattern Recognition
, Honolulu, HI (
IEEE
,
2017
), pp.
4681
4690
.
150.
Lee
,
C. Y.
,
Tippett
,
M. K.
,
Sobel
,
A. H.
, and
Camargo
,
S. J.
, “
An environmentally forced tropical cyclone hazard model
,”
J. Adv. Model. Earth Syst.
10
(
1
),
223
241
(
2018
).
151.
Lee
,
J.
,
Im
,
J.
,
Cha
,
D.-H.
,
Park
,
H.
, and
Sim
,
S.
, “
Tropical cyclone intensity estimation using multi-dimensional convolutional neural networks from geostationary satellite data
,”
Remote Sens.
12
,
108
(
2020
).
152.
Letson
,
F. W.
,
Barthelmie
,
R. J.
,
Hodges
,
K. I.
, and
Pryor
,
S. C.
, “
Intense windstorms in the northeastern United States
,”
Nat. Hazards Earth Syst. Sci.
21
(
7
),
2001
2020
(
2021
).
153.
Lewis
,
W. E.
,
Rozoff
,
C.
,
Alessandrini
,
S.
, and
Delle Monache
,
L.
, “
Performance of the HWRF Rapid Intensification Analog Ensemble (HWRF RI-AnEn) during the 2017 and 2018 HFIP real-time demonstrations
,”
Weather Forecast.
35
,
841
856
(
2020
).
154.
Li
,
L.
and
Chakraborty
,
P.
, “
Slower decay of landfalling hurricanes in a warming world
,”
Nature
587
,
230
234
(
2020
).
155.
Li
,
Q.
,
Webb
,
A.
,
Fox-Kemper
,
B.
,
Craig
,
A.
,
Danabasoglu
,
G.
,
Large
,
W. G.
, and
Vertenstein
,
M.
, “
Langmuir mixing effects on global climate: WAVEWATCH III in CESM
,”
Ocean Modell.
103
,
145
160
(
2016
).
156.
Li
,
X.
,
Pu
,
Z.
, and
Gao
,
Z.
, “
Effects of roll vortices on the evolution of hurricane Harvey during landfall
,”
J. Atmos. Sci.
78
(
6
),
1847
1867
(
2021
).
157.
Li
,
X.
and
Pu
,
Z.
, “
Dynamic mechanisms associated with the structure and evolution of roll vortices and coherent turbulence in the hurricane boundary layer: A large eddy simulation during the landfall of hurricane Harvey
,”
Boundary-Layer Meteorol.
186
,
615
636
(
2023
).
158.
Li
,
Y.
,
Peng
,
S.
,
Wang
,
J.
, and
Yan
,
J.
, “
Impacts of nonbreaking wave-stirring-induced mixing on the upper ocean thermal structure and typhoon intensity in the South China Sea
,”
J. Geophys. Res.
119
(
8
),
5052
5070
, https://doi.org/10.1002/2014JC009956 (
2014
).
159.
Lighthill
,
J.
, “
Ocean spray and the thermodynamics of tropical cyclones
,”
J. Eng. Math.
35
(
1–2
),
11
42
(
1999
).
160.
Lin
,
J.
,
Emanuel
,
K.
, and
Vigh
,
J. L.
, “
Forecasts of hurricanes using large-ensemble outputs
,”
Weather Forecast.
35
,
1713
1731
(
2020
).
161.
Liu
,
B.
,
Liu
,
H.
,
Xie
,
L.
,
Guan
,
C.
, and
Zhao
,
D.
, “
A coupled atmosphere–wave–ocean modeling system: Simulation of the intensity of an idealized tropical cyclone
,”
Mon. Weather Rev.
139
(
1
),
132
152
(
2011
).
162.
Liu
,
F.
, “
Projections of future US design wind speeds due to climate change for estimating hurricane losses
,” Ph.D. thesis (
Clemson University
,
2014
).
163.
Liu
,
L.
,
Yang
,
G.
,
Wang
,
B.
,
Zhang
,
C.
,
Li
,
R.
,
Zhang
,
Z.
,
Ji
,
Y.
, and
Wang
,
L.
, “
C-Coupler1: A Chinese community coupler for Earth system modeling
,”
Geosci. Model Dev.
7
(
5
),
2281
2302
(
2014
).
164.
Liu
,
C.
,
Ikeda
,
K.
,
Rasmussen
,
R.
,
Barlage
,
M.
,
Newman
,
A. J.
,
Prein
,
A. F.
et al, “
Continental-scale convection-permitting modeling of the current and future climate of North America
,”
Clim. Dyn.
49
,
71
95
(
2017
).
165.
Lopez Ortiz
,
J. P.
, “
Effects of wind turbine rotor positioning on tornado induced loads
,” M.S. thesis (
The University of Western Ontario
,
2023
).
166.
Lu
,
X.
,
Wong
,
W.-K.
,
Yu
,
H.
, and
Yang
,
X.
, “
Tropical cyclone size identification over the Western North Pacific using support vector machine and general regression neural network
,”
J. Meteorol. Soc. Jpn.
100
,
927
941
(
2022
).
167.
Ma
,
T.
and
Sun
,
C.
, “
Large eddy simulation of hurricane boundary layer turbulence and its application for power transmission system
,”
J. Wind Eng. Ind. Aerodyn.
210
,
104520
(
2021
).
168.
Madden
,
R. A.
and
Julian
,
P. R.
, “
Description of global-scale circulation cells in the tropics with a 40–50 day period
,”
J. Atmos. Sci.
29
,
1109
1123
(
1972
).
169.
Madec
,
G.
and
NEMO Team
, see https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf for “
Nemo Ocean Engine
” (
2016
); accessed Aug 01 2023.
170.
Mafi
,
S.
and
Amirinia
,
G.
, “
Forecasting hurricane wave height in Gulf of Mexico using soft computing methods
,”
Ocean Eng.
146
,
352
362
(
2017
).
171.
Makin
,
V. K.
, “
A note on the drag of the sea surface at hurricane winds
,”
Boundary-Layer Meteorol.
115
(
1
),
169
176
(
2005
).
172.
Mann
,
M. E.
,
Woodruff
,
J. D.
,
Donnelly
,
J. P.
, and
Zhang
,
Z.
, “
Atlantic hurricanes and climate over the past 1,500 years
,”
Nature
460
(
7257
),
880
883
(
2009
).
173.
Martin
,
P. J.
, “
Simulation of the mixed layer at OWS November and Papa with several models
,”
J. Geophys. Res.
90
(
C1
),
903
, https://doi.org/10.1029/JC090iC01p00903 (
1985
).
174.
Marciano
,
C. G.
,
Lackmann
,
G. M.
, and
Robinson
,
W. A.
, “
Changes in US East Coast cyclone dynamics with climate change
,”
J. Clim.
28
(
2
),
468
484
(
2015
).
175.
Mehra
,
A.
,
Tallapragada
,
V.
,
Zhang
,
Z.
,
Liu
,
B.
,
Zhu
,
L.
,
Wang
,
W.
, and
Kim
,
H. S.
, “
Advancing the state of the art in operational tropical cyclone forecasting at NCEP
,”
Trop. Cyclone Res. Rev.
7
(
1
),
51
56
(
2018
).
176.
Mellor
,
G.
, “
On theories dealing with the interaction of surface waves and ocean circulation
,”
J. Geophys. Res.
121
(
7
),
4474
4486
, https://doi.org/10.1002/2016JC011768 (
2016
).
177.
Mellor
,
G.
and
Blumberg
,
A.
, “
Wave breaking and ocean surface layer thermal response
,”
J. Phys. Oceanogr.
34
(
3
),
693
698
(
2004
).
178.
Meng
,
F.
,
Song
,
T.
,
Xu
,
D.
,
Xie
,
P.
, and
Li
,
Y.
, “
Forecasting tropical cyclones wave height using bidirectional gated recurrent unit
,”
Ocean Eng.
234
,
108795
(
2021
).
179.
Moon
,
I.-J.
,
Ginis
,
I.
, and
Hara
,
T.
, “
Effect of surface waves on air–sea momentum exchange. Part II: Behavior of drag coefficient under tropical cyclones
,”
J. Atmos. Sci.
61
(
19
),
2334
2348
(
2004
).
180.
Heming
,
J. T.
,
Prates
,
F.
,
Bender
,
M. A.
,
Bowyer
,
R.
,
Cangialosi
,
J.
,
Caroff
,
P.
et al, “
Review of recent progress in tropical cyclone track forecasting and expression of uncertainties
,”
Trop. Cyclone Res. Rev.
8
(
4
),
181
218
(
2019
).
181.
Michaelis
,
A. C.
and
Lackmann
,
G. M.
, “
Storm-scale dynamical changes of extratropical transition events in present-day and future high-resolution global simulations
,”
J. Clim.
34
(
12
),
5037
5062
(
2021
).
182.
Michaelis
,
A. C.
and
Lackmann
,
G. M.
, “
Climatological changes in the extratropical transition of tropical cyclones in high-resolution global simulations
,”
J. Clim.
32
,
8733
8753
(
2019
).
183.
Minuzzi
,
F. C.
and
Farina
,
L.
, “
A deep learning approach to predict significant wave height using long short-term memory
,”
Ocean Model.
181
,
102151
(
2023
).
184.
Mishnaevsky
,
L.
,
Hasager
,
C. B.
,
Bak
,
C.
,
Tilg
,
A.-M.
,
Bech
,
J. I.
,
Rad
,
S. D.
, and
Faester
,
S.
, “
Leading edge erosion of wind turbine blades: Understanding, prevention and protection
,”
Renewable Energy
169
,
953
969
(
2021
).
185.
Mogensen
,
K. S.
,
Magnusson
,
L.
,
Mishnaevsky
, and
Bidlot
,
J.-R.
, “
Tropical cyclone sensitivity to ocean coupling in the ECMWF coupled model
,”
J. Geophys. Res. Oceans
122
,
4392
4412
, https://doi.org/10.1002/2017JC012753 (
2017
).
186.
Montgomery
,
M. T.
and
Smith
,
R. K.
, “
Recent developments in the fluid dynamics of tropical cyclones
,”
Annu. Rev. Fluid Mech.
49
(
1
),
541
574
(
2017
).
187.
Moon
,
I. J.
,
Knutson
,
T. R.
,
Kim
,
H. J.
,
Babanin
,
A. V.
, and
Jeong
,
J. Y.
, “
Why do eastern North Pacific hurricanes intensify more and faster than their western-counterpart typhoons with less ocean energy?
,”
Bull. Am. Meteorol. Soc.
103
(
11
),
E2604
E2627
(
2022
).
188.
Musial
,
W.
,
Beiter
,
P.
,
Stefek
,
J.
,
Scott
,
G.
,
Heimiller
,
D.
,
Stehly
,
T.
,
Tegen
,
S.
,
Roberts
,
O.
,
Greco
,
T.
, and
Keyser
,
D.
, “
Offshore wind in the US Gulf of Mexico: Regional economic modeling and site-specific analyses
,”
Report No. BOEM 2020-018
(
Bureau of Ocean Energy Management
,
New Orleans, LA
,
2020
), p.
99
.
189.
Merizzi
,
F.
,
Asperti
,
A.
, and
Colamonaco
,
S.
, “
Wind speed super-resolution and validation: From ERA5 to CERRA via diffusion models
,” arXiv:2401.15469 (
2024
).
190.
Nguyen
,
T.
,
Brandstetter
,
J.
,
Kapoor
,
A.
,
Gupta
,
J. K.
, and
Grover
,
A.
, “
Climax: A foundation model for weather and climate
,” arXiv:2301.10343 (
2023
).
192.
O'Grady
,
J. G.
,
Stephenson
,
A. G.
, and
McInnes
,
K. L.
, “
Gauging mixed climate extreme value distributions in tropical cyclone regions
,”
Sci. Rep.
12
,
4626
(
2022
).
193.
Olabarrieta
,
M.
,
Medina
,
R.
, and
Castanedo
,
S.
, “
Effects of wave-current interaction on the current profile
,”
Coastal Eng.
57
(
7
),
643
655
(
2010
).
194.
Olabarrieta
,
M.
,
Warner
,
J. C.
,
Armstrong
,
B.
,
Zambon
,
J. B.
, and
He
,
R.
, “
Ocean–atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system
,”
Ocean Modell.
43–44
,
112
137
(
2012
).
195.
Oost
,
W. A.
,
Komen
,
G. J.
,
Jacobs
,
C. M. J.
, and
Van Oort
,
C.
, “
New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE
,”
Boundary-Layer Meteorol.
103
(
3
),
409
438
(
2002
).
196.
Ooyama
,
K. V.
, “
A thermodynamic foundation for modeling the moist atmosphere
,”
J. Atmos. Sci.
47
(
21
),
2580
2593
(
1990
).
197.
Palmer
,
T.
, “
Climate forecasting: Build high-resolution global climate models
,”
Nature
515
(
7527
),
338
339
(
2014
).
198.
Papin
,
P. P.
,
Bosart
,
L. F.
, and
Tom
,
R. D.
, “
A feature-based approach to classifying summertime potential vorticity streamers linked to Rossby wave breaking in the North Atlantic Basin
,”
J. Clim.
33
,
5953
5969
(
2020
).
199.
Pathak
,
J.
,
Subramanian
,
S.
,
Harrington
,
P.
,
Raja
,
S.
,
Chattopadhyay
,
A.
,
Mardani
,
M.
,
Kurth
,
T.
,
Hall
,
D.
,
Li
,
Z.
,
Azizzadenesheli
,
K.
, and
Hassanzadeh
,
P.
, “
FourCastNet: A global data-driven high-resolution weather model using adaptive Fourier neural operators
,” arXiv:2202.11214 (
2022
).
200.
Perrie
,
W.
,
Andreas
,
E. L.
,
Zhang
,
W.
,
Li
,
W.
,
Gyakum
,
J.
, and
McTaggart-Cowan
,
R.
, “
Sea spray impacts on intensifying midlatitude cyclones
,”
J. Atmos. Sci.
62
(
6
),
1867
1883
(
2005
).
201.
Perrie
,
W.
,
Ren
,
X.
,
Zhang
,
W.
, and
Long
,
Z.
, “
Simulation of extratropical Hurricane Gustav using a coupled atmosphere-ocean-sea spray model
,”
Geophys. Res. Lett.
31
(
3
),
L03110
, https://doi.org/10.1029/2003GL018571 (
2004
).
202.
Pleskachevsky
,
A.
,
Dobrynin
,
M.
,
Babanin
,
A. V.
,
Günther
,
H.
, and
Stanev
,
E.
, “
Turbulent mixing due to surface waves indicated by remote sensing of suspended particulate matter and its implementation into coupled modeling of waves, turbulence, and circulation
,”
J. Phys. Oceanogr.
41
(
4
),
708
724
(
2011
).
203.
Porchetta
,
S.
,
Temel
,
O.
,
Muñoz-Esparza
,
D.
,
Reuder
,
J.
,
Monbaliu
,
J.
,
van Beeck
,
J.
, and
van Lipzig
,
N.
, “
A new roughness length parameterization accounting for wind-wave (mis)alignment
,”
Atmos. Chem. Phys.
19
(
10
),
6681
6700
(
2019
).
204.
Porchetta
,
S.
,
Temel
,
O.
,
Warner
,
J. C.
,
Muñoz-Esparza
,
D.
,
Monbaliu
,
J.
,
van Beeck
,
J.
, and
van Lipzig
,
N.
, “
Evaluation of a roughness length parametrization accounting for wind–wave alignment in a coupled atmosphere–wave model
,”
Q. J. R. Meteorol. Soc.
147
(
735
),
825
846
(
2021
).
205.
Powers
,
J. G.
,
Klemp
,
J. B.
,
Skamarock
,
W. C.
,
Davis
,
C. A.
,
Dudhia
,
J.
,
Gill
,
D. O.
,
Coen
,
J. L.
,
Gochis
,
D. J.
,
Ahmadov
,
R.
,
Peckham
,
S. E.
,
Grell
,
G. A.
,
Michalakes
,
J.
,
Trahan
,
S.
,
Benjamin
,
S. G.
,
Alexander
,
C. R.
,
Dimego
,
G. J.
,
Wang
,
W.
,
Schwartz
,
C. S.
,
Romine
,
G. S.
et al, “
The weather research and forecasting model: Overview, system efforts, and future directions
,”
Bull. Am. Meteorol. Soc.
98
(
8
),
1717
1737
(
2017
).
206.
Pradhan
,
R.
,
Aygun
,
R. S.
,
Maskey
,
M.
,
Ramachandran
,
R.
, and
Cecil
,
D. J.
, “
Tropical cyclone intensity estimation using a deep convolutional neural network
,”
IEEE Trans. Image Process.
27
,
692
702
(
2018
).
207.
Prakash
,
K. R.
,
Pant
,
V.
, and
Nigam
,
T.
, “
Effects of the sea surface roughness and sea spray-induced flux parameterization on the simulations of a tropical cyclone
,”
J. Geophys. Res.
124
(
24
),
14037
14058
, https://doi.org/10.1029/2018JD029760 (
2019
).
208.
Pringle
,
W. J.
,
Wang
,
J.
,
Roberts
,
K. J.
, and
Kotamarthi
,
V. R.
, “
Projected changes to cool‐season storm tides in the 21st century along the Northeastern United States Coast
,”
Earth's Future
9
(
7
),
e2020EF001940
(
2021
).
209.
Pringle
,
W. J.
and
Kotamarthi
,
V. R.
, “
Coupled ocean wave-atmosphere models for offshore wind energy applications
,”
Report No. ANL/EVS-21/8
,
2021
.
210.
Pryor
,
S. C.
,
Barthelmie
,
R. J.
,
Cadence
,
J.
,
Dellwik
,
E.
,
Hasager
,
C. B.
,
Kral
,
S. T.
,
Reuder
,
J.
,
Rodgers
,
M.
, and
Veraart
,
M.
, “
Atmospheric drivers of wind turbine blade leading edge erosion: review and recommendations for future research
,”
Energies
15
,
8553
(
2022
).
211.
Qiao
,
F.
,
Song
,
Z.
,
Bao
,
Y.
,
Song
,
Y.
,
Shu
,
Q.
,
Huang
,
C.
, and
Zhao
,
W.
, “
Development and evaluation of an Earth System Model with surface gravity waves
,”
J. Geophys. Res.
118
(
9
),
4514
4524
, https://doi.org/10.1002/jgrc.20327 (
2013
).
212.
Qiao
,
F.
,
Yuan
,
Y.
,
Yang
,
Y.
,
Zheng
,
Q.
,
Xia
,
C.
, and
Ma
,
J.
, “
Wave-induced mixing in the upper ocean: Distribution and application to a global ocean circulation model
,”
Geophys. Res. Lett.
31
(
11
),
L11303
, https://doi.org/10.1029/2004GL019824 (
2004
).
213.
Rendfrey
,
T. S.
,
Bukovsky
,
M. S.
,
McCrary
,
R. R.
, and
Fuentes-Franco
,
R.
, “
An assessment of tropical cyclones in North American CORDEX WRF simulations
,”
Weather Clim. Extremes
34
,
100382
(
2021
).
214.
Reed
,
K. A.
and
Jablonowski
,
C.
, “
Assessing the uncertainty in tropical cyclone simulations in NCAR's community atmosphere model
,”
J. Adv. Model. Earth Syst.
3
(
3
),
M08002
(
2011
).
215.
Reed
,
K. A.
,
Bacmeister
,
J. T.
,
Huff
,
J. J. A.
,
Wu
,
X.
,
Bates
,
S. C.
, and
Rosenbloom
,
N. A.
, “
Exploring the impact of dust on North Atlantic hurricanes in a high-resolution climate model
,”
Geophys. Res. Lett.
46
,
1105
1112
, https://doi.org/10.1029/2018GL080642 (
2019
).
216.
Ren
,
H.
,
Dudhia
,
J.
, and
Li
,
H.
, “
Large‐eddy simulation of idealized hurricanes at different sea surface temperatures
,”
J. Adv. Model. Earth Syst.
12
(
9
),
e2020MS002057
(
2020
).
217.
Ren
,
H.
,
Dudhia
,
J.
,
Shitang
,
K.
, and
Li
,
H.
, “
The basic wind characteristics of idealized hurricanes of different intensity levels
,”
J. Wind Eng. Ind. Aerodyn.
225
,
104980
(
2022
).
218.
Reichl
,
B. G.
,
Hara
,
T.
, and
Ginis
,
I.
, “
Sea state dependence of the wind stress over the ocean under hurricane winds
,”
J. Geophys. Res.
119
(
1
),
30
51
, https://doi.org/10.1002/2013JC009289 (
2014
).
219.
Resio
,
D. T.
and
Westerink
,
J. J.
, “
Modeling the physics of storm surges
,”
Phys. Today
61
(
9
),
33
38
(
2008
).
220.
Ricciardulli
,
L.
and
Howell
,
B.
, see https://community.wmo.int/en/iwtc-10-reports for “
Topic 1.1: Remote sensing and TC analysis: Current and emerging satellite sensors
” (
2022
).
221.
Richter
,
D. H.
and
Stern
,
D. P.
, “
Evidence of spray-mediated air-sea enthalpy flux within tropical cyclones
,”
Geophys. Res. Lett.
41
(
8
),
2997
3003
, https://doi.org/10.1002/2014GL059746 (
2014
).
222.
Roberts
,
M. J.
,
Camp
,
J.
,
Seddon
,
J.
,
Vidale
,
P. L.
,
Hodges
,
K.
,
Vannière
,
B.
et al, “
Projected future changes in tropical cyclones using the CMIP6 HighResMIP multimodel ensemble
,”
Geophys. Res. Lett.
47
(
14
),
e2020GL088662
, https://doi.org/10.1029/2020GL088662 (
2020
).
223.
Roberts
,
M. J.
,
Vidale
,
P. L.
,
Mizielinski
,
M. S.
,
Demory
,
M. E.
,
Schiemann
,
R.
,
Strachan
,
J.
,
Hodges
,
K.
,
Bell
,
R.
, and
Camp
,
J.
, “
Tropical cyclones in the UPSCALE ensemble of high-resolution global climate models
,”
J. Clim.
28
(
2
),
574
596
(
2015
).
224.
Roberts
,
M. J.
,
Camp
,
J.
,
Seddon
,
J.
,
Vidale
,
P. L.
,
Hodges
,
K.
,
Vanniere
,
B.
et al, “
Impact of model resolution on tropical cyclone simulation using the HighResMIP-PRIMAVERA multimodel ensemble
,”
J. Clim.
33
(
7
),
2557
2583
(
2020
).
225.
Rodysill
,
J. R.
,
Donnelly
,
J. P.
,
Sullivan
,
R.
,
Lane
,
P. D.
,
Toomey
,
M.
,
Woodruff
,
J. D.
et al, “
Historically unprecedented Northern Gulf of Mexico hurricane activity from 650 to 1250 CE
,”
Sci. Rep.
10
(
1
),
19092
(
2020
).
226.
Rose
,
S.
,
Jaramillo
,
P.
,
Small
,
M. J.
,
Grossmann
,
I.
, and
Apt
,
J.
, “
Quantifying the hurricane risk to offshore wind turbines
,”
Proc. Nat. Acad. Sci. U. S. A.
109
(
9
),
3247
3252
(
2012
).
227.
Rotunno
,
R.
,
Chen
,
Y.
,
Wang
,
W.
,
Davis
,
C.
,
Dudhia
,
J.
, and
Holland
,
G. J.
, “
Large-eddy simulation of an idealized tropical cyclone
,”
Bull. Am. Meteorol. Soc.
90
(
12
),
1783
1788
(
2009
).
228.
Sanchez Gomez
,
M.
,
Lundquist
,
J. K.
,
Deskos
,
G.
,
Arwade
,
S. R.
,
Meyers
,
A. T.
, and
Hajjar
,
J. F.
, “
Wind conditions in category 1–3 tropical cyclones can exceed wind turbine design standards
,”
J. Geophys. Res.
128
,
e2023JD039233
, https://doi.org/10.1029/2023JD039233 (
2023
).
229.
Schaffer
,
J. D.
,
Roebber
,
P. J.
, and
Evans
,
C.
, “
Development and evaluation of an evolutionary programming-based tropical cyclone intensity model
,”
Mon. Weather Rev.
148
,
1951
1970
(
2020
).
230.
Schneider
,
T.
,
Teixeira
,
J.
,
Bretherton
,
C. S.
,
Brient
,
F.
,
Pressel
,
K. G.
,
Schär
,
C.
, and
Siebesma
,
A. P.
, “
Climate goals and computing the future of clouds
,”
Nat. Clim. Change
7
(
1
),
3
5
(
2017
).
231.
Shaevitz
,
D. A.
,
Camargo
,
S. J.
,
Sobel
,
A. H.
,
Jonas
,
J. A.
,
Kim
,
D.
,
Kumar
,
A.
et al, “
Characteristics of tropical cyclones in high-resolution models in the present climate
,”
J. Adv. Model. Earth Syst.
6
(
4
),
1154
1172
(
2014
).
232.
Shchepetkin
,
A. F.
and
McWilliams
,
J. C.
, “
The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model
,”
Ocean Modell.
9
(
4
),
347
404
(
2005
).
233.
Shchepetkin
,
A. F.
and
McWilliams
,
J. C.
, “
Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595–3624
,”
J. Comput. Phys.
228
(
24
),
8985
9000
(
2009
).
234.
Shimura
,
T.
,
Mori
,
N.
,
Takemi
,
T.
, and
Mizuta
,
R.
, “
Long-term impacts of ocean wave-dependent roughness on global climate systems
,”
J. Geophys. Res.
122
(
3
),
1995
2011
, https://doi.org/10.1002/2016JC012621 (
2017
).
235.
Siddons
,
C.
,
Macleod
,
C.
,
Yang
,
L.
, and
Stack
,
M.
, “
An experimental approach to analysing rain droplet impingement on wind turbine blade materials
,” in
EWEA 2015 Annuual Event
(
2015
).
236.
Skamarock
,
W. C.
,
Klemp
,
J. B.
,
Dudhia
,
J.
,
Gill
,
D. O.
,
Barker
,
D. M.
,
Wang
,
W.
, and
Powers
,
J. G.
, “
A description of the advanced research WRF version 2
,”
Report No. NCAR/TN-468+STR
(
University Corporation for Atmospheric Research
,
2005
).
237.
Smith
,
J. A.
, “
Wave–current interactions in finite depth
,”
J. Phys. Oceanogr.
36
(
7
),
1403
1419
(
2006
).
238.
Snaiki
,
R.
and
Wu
,
T.
, “
Knowledge-enhanced deep learning for simulation of tropical cyclone boundary-layer winds
,”
J. Wind Eng. Ind. Aerodyn.
194
,
103983
(
2019
).
239.
Song
,
T.
,
Han
,
R.
,
Meng
,
F.
,
Wang
,
J.
,
Wei
,
W.
, and
Peng
,
S.
, “
A significant wave height prediction method based on deep learning combining the correlation between wind and wind waves
,”
Front. Mar. Sci.
9
,
7
(
2022
).
240.
Song
,
Y.
,
Qiao
,
F.
, and
Song
,
Z.
, “
Improved simulation of the South Asian summer monsoon in a coupled GCM with a more realistic ocean mixed layer
,”
J. Atmos. Sci.
69
(
5
),
1681
1690
(
2012
).
241.
Staid
,
A.
,
Pinson
,
P.
, and
Guikema
,
S. D.
, “
Probabilistic maximum‐value wind prediction for offshore environments
,”
Wind Energy
18
(
10
),
1725
1738
(
2015
).
242.
Stengel
,
K.
,
Glaws
,
A.
,
Hettinger
,
D.
, and
King
,
R. N.
, “
Adversarial super-resolution of climatological wind and solar data
,”
Proc. Natl. Acad. Sci.
117
(
29
),
16805
16815
(
2020
).
243.
Stern
,
D. P.
,
Bryan
,
G. H.
, and
Aberson
,
S. D.
, “
Extreme low-level updrafts and wind speeds measured by dropsondes in tropical cyclones
,”
Mon. Weather Rev.
144
(
6
),
2177
2204
(
2016
).
244.
Stern
,
D. P.
,
Bryan
,
G. H.
,
Lee
,
C.-Y.
, and
Doyle
,
J. D.
, “
Estimating the risk of extreme wind gusts in tropical cyclones using idealized large-eddy simulations and a statistical–dynamical model
,”
Mon. Weather Rev.
149
,
4183
4204
(
2021
).
245.
Strong
,
J. D. O.
,
Vecchi
,
G. A.
, and
Ginoux
,
P.
, “
The climatological effect of Saharan dust on global tropical cyclones in a fully coupled GCM
,”
J. Geophys. Res.
123
,
5538
5559
, https://doi.org/10.1029/2017JD027808 (
2018
).
246.
Sullivan
,
P. P.
and
McWilliams
,
J. C.
, “
Dynamics of winds and currents coupled to surface waves
,”
Annu. Rev. Fluid Mech.
42
(
1
),
19
42
(
2010
).
247.
Sun
,
Q.
,
Song
,
J.
, and
Guan
,
C.
, “
Simulation of the ocean surface mixed layer under the wave breaking
,”
Acta Oceanol. Sin.
24
(
3
),
9
15
(
2005
).
248.
Tan
,
J.
,
Yang
,
Q.
,
Hu
,
J.
,
Huang
,
Q.
, and
Chen
,
S.
, “
Tropical cyclone intensity estimation using Himawari-8 satellite cloud products and deep learning
,”
Remote Sens.
14
,
812
(
2022
).
249.
Tang
,
J.
,
Zhang
,
J. A.
,
Chan
,
P.
,
Hon
,
K.
,
Lei
,
X.
, and
Wang
,
Y.
, “
A direct aircraft observation of helical rolls in the tropical cyclone boundary layer
,”
Sci. Rep.
11
,
18771
(
2021
).
250.
Tao
,
S.
,
Zhang
,
X.
,
Wang
,
Y.
, and
Yang
,
J.
, “
Transient behavior analysis of offshore wind turbines during lightning strike to multi-blade
,”
IEEE Access
6
,
22070
22083
(
2018
).
251.
Taylor
,
P. K.
and
Yelland
,
M. J.
, “
The dependence of sea surface roughness on the height and steepness of the waves
,”
J. Phys. Oceanogr.
31
(
2
),
572
590
(
2001
).
252.
Terray
,
E. A.
,
Donelan
,
M. A.
,
Agrawal
,
Y. C.
,
Drennan
,
W. M.
,
Kahma
,
K. K.
,
Williams
,
A. J.
,
Hwang
,
P. A.
, and
Kitaigorodskii
,
S. A.
, “
Estimates of kinetic energy dissipation under breaking waves
,”
J. Phys. Oceanogr.
26
(
5
),
792
807
(
1996
).
253.
Tian
,
J.
and
Ma
,
K.-K.
, “
A survey on super-resolution imaging
,”
Signal Image Video Process.
5
,
329
342
(
2011
).
254.
Tian
,
W.
,
Zhou
,
X.
,
Niu
,
X.
,
Lai
,
L.
,
Zhang
,
Y.
, and
Sian
,
K. T. C. L. K.
, “
A lightweight multitask learning model with adaptive loss balance for tropical cyclone intensity and size estimation
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
16
,
1057
1071
(
2023
).
255.
Toba
,
Y.
and
Kawamura
,
H.
, “
Wind-wave coupled downward-bursting boundary layer (DBBL) beneath the sea surface
,”
J. Oceanogr.
52
(
4
),
409
419
(
1996
).
256.
Toffoli
,
A.
,
McConochie
,
J.
,
Ghantous
,
M.
,
Loffredo
,
L.
, and
Babanin
,
A. V.
, “
The effect of wave-induced turbulence on the ocean mixed layer during tropical cyclones: Field observations on the Australian North-West Shelf
,”
J. Geophys. Res.
117
(
C11
),
C00J24
, https://doi.org/10.1029/2011JC007780 (
2012
).
257.
Toomey
,
M. R.
,
Curry
,
W. B.
,
Donnelly
,
J. P.
, and
Van Hengstum
,
P. J.
, “
Reconstructing 7000 years of North Atlantic hurricane variability using deep-sea sediment cores from the western Great Bahama Bank
,”
Paleoceanography
28
(
1
),
31
41
, https://doi.org/10.1002/palo.20012 (
2013
).
258.
Touma
,
D.
,
Stevenson
,
S.
,
Camargo
,
S. J.
,
Horton
,
D. E.
, and
Diffenbaugh
,
N. S.
, “
Variations in the intensity and spatial extent of tropical cyclone precipitation
,”
Geophys. Res. Lett.
46
(
23
),
13992
14002
, https://doi.org/10.1029/2019GL083452 (
2019
).
259.
Tsartsali
,
E. E.
,
Haarsma
,
R. J.
,
Athanasiadis
,
P. J.
,
Bellucci
,
A.
,
de Vries
,
H.
,
Drijfhout
,
S.
,
de Vries
,
I. E.
,
Putrahasan
,
D.
,
Roberts
,
M. J.
,
Sanchez–Gomez
,
E.
, and
Roberts
,
C. D.
, “
Impact of resolution on the atmosphere–ocean coupling along the Gulf Stream in global high resolution models
,”
Clim. Dyn.
58
(
11–12
),
3317
3333
(
2022
).
260.
Ulbrich
,
U.
,
Leckebusch
,
G. C.
, and
Pinto
,
J. G.
, “
Extra-tropical cyclones in the present and future climate: A review
,”
Theor. Appl. Climatol.
96
(
1–2
),
117
131
(
2009
).
261.
Umlauf
,
L.
and
Burchard
,
H.
, “
A generic length-scale equation for geophysical turbulence models
,”
J. Mar. Res.
61
(
2
),
235
265
(
2003
).
262.
Valcke
,
S.
,
Craig
,
T.
, and
Coquart
,
L.
, see http://www.cerfacs.fr/oa4web/oasis3-mct_3.0/oasis3mct_UserGuide.pdf for “
OASIS3-MCT_3.0 Coupler User Guide
” (
CER- FACS/CNRS
,
Toulouse, France
,
2015
), p.
58
; accessed Aug 1 2023.
263.
Varalakshmi
,
P.
,
Vasumathi
,
N.
, and
Venkatesan
,
R.
, “
Tropical cyclone intensity prediction based on hybrid learning techniques
,”
J. Earth Syst. Sci.
132
,
28
(
2023
).
264.
Varlas
,
G.
,
Vervatis
,
V.
,
Spyrou
,
C.
,
Papadopoulou
,
E.
,
Papadopoulos
,
A.
, and
Katsafados
,
P.
, “
Investigating the impact of atmosphere–wave–ocean interactions on a Mediterranean tropical-like cyclone
,”
Ocean Modell.
153
,
101675
(
2020
).
265.
Vecchi
,
G. A.
,
Landsea
,
C.
,
Zhang
,
W.
,
Villarini
,
G.
, and
Knutson
,
T.
, “
Changes in Atlantic major hurricane frequency since the late-19th century
,”
Nat. Commun.
12
,
4054
(
2021
).
266.
Vickery
,
P. J.
,
Skerlj
,
P. F.
, and
Twisdale
,
L. A.
, “
Simulation of hurricane risk in the U.S. using empirical track model
,”
J. Struct. Eng.
126
(
10
),
1222
1237
(
2000
).
267.
Vitart
,
F.
,
Ardilouze
,
C.
,
Bonet
,
A.
,
Brookshaw
,
A.
,
Chen
,
M.
,
Codorean
,
C.
et al, “
The subseasonal to seasonal (S2S) prediction project database
,”
Bull. Am. Meteorol. Soc.
98
(
1
),
163
173
(
2017
).
268.
Wada
,
A.
and
Usui
,
N.
, “
Impacts of oceanic preexisting conditions on predictions of Typhoon Hai-Tang in 2005
,”
Adv. Meteorol.
2010
,
756071
(
2010
).
269.
Wada
,
A.
,
Kanada
,
S.
, and
Yamada
,
H.
, “
Effect of air-sea environmental conditions and interfacial processes on extremely intense Typhoon Haiyan
,”
J. Geophys. Res.
123
(
405
),
379
310
(
2018
).
270.
WAMDI Group
, “
The WAM model—A third generation ocean wave prediction model
,”
J. Phys. Oceanogr.
18
(
12
),
1775
1810
(
1988
).
271.
Wang
,
J.
et al, “
Impact of tropical and extratropical cyclones on future U.S. Offshore Wind Energy
,”
Bull. Am. Meteorol. Soc.
105
,
E1506
E1513
(
2024
).
272.
Wang
,
Y. Q.
and
Wu
,
C. C.
, “
Current understanding of tropical cyclone structure and intensity changes–A review
,”
Meteorol. Atmos. Phys.
87
(
4
),
257
278
(
2004
).
273.
Wang
,
Y.
,
Qiao
,
F.
,
Fang
,
G.
, and
Wei
,
Z.
, “
Application of wave-induced vertical mixing to the K profile parameterization scheme
,”
J. Geophys. Res.
115
(
9
),
1
12
, https://doi.org/10.1029/2009JC005856 (
2010
).
274.
Warner
,
J. C.
,
Armstrong
,
B.
,
He
,
R.
, and
Zambon
,
J. B.
, “
Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system
,”
Ocean Modell.
35
(
3
),
230
244
(
2010
).
275.
Warner
,
J. C.
,
Sherwood
,
C. R.
,
Signell
,
R. P.
,
Harris
,
C. K.
, and
Arango
,
H. G.
, “
Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model
,”
Comput. Geosci.
34
(
10
),
1284
1306
(
2008
).
276.
Wehner
,
M. F.
,
Reed
,
K. A.
,
Li
,
F.
,
Prabhat
,
Bacmeister
,
J.
,
Chen
,
C. T.
,
Jablonowski
,
C.
et al, “
The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1
,”
J. Adv. Model. Earth Syst.
6
(
4
),
980
997
(
2014
).
277.
Wei
,
Z.
, “
Forecasting wind waves in the US Atlantic Coast using an artificial neural network model: Towards and AI-based storm forecast system
,”
Ocean Eng.
237
,
109646
(
2021
).
278.
Wimmers
,
A.
and
Duong
,
Q.-P.
, https://community.wmo.int/en/iwtc-10-reports for “
Topic 1.2: Objective satellite methods including AI algorithms
” (
2022
).
279.
Wimmers
,
A.
,
Velden
,
C.
, and
Cossuth
,
J. H.
, “
Using deep learning to estimate tropical cyclone intensity from satellite passive microwave imagery
,”
Mon. Weather Rev.
147
,
2261
2282
(
2019
).
280.
Worsnop
,
R. P.
,
Bryan
,
G. H.
,
Lundquist
,
J. K.
, and
Zhang
,
J. A.
, “
Using large-eddy simulations to define spectral and coherence characteristics of the hurricane boundary layer for wind-energy applications
,”
Boundary-Layer Meteorol.
165
(
1
),
55
86
(
2017a
).
281.
Worsnop
,
R. P.
,
Lundquist
,
J. K.
,
Bryan
,
G. H.
,
Damiani
,
R.
, and
Musial
,
W.
, “
Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards
,”
Geophys. Res. Lett.
44
,
6413
6420
, https://doi.org/10.1002/2017GL073537 (
2017b
).
282.
Wu
,
L.
,
Breivik
,
Ø.
, and
Rutgersson
,
A.
, “
Ocean‐wave‐atmosphere interaction processes in a fully coupled modeling system
,”
J. Adv. Model. Earth Syst.
11
(
11
),
3852
3874
(
2019
).
283.
Wu
,
L.
,
Shao
,
M.
, and
Sahlée
,
E.
, “
Impact of air-wave-sea coupling on the simulation of offshore wind and wave energy potentials
,”
Atmosphere
11
(
4
),
1
21
(
2020
).
284.
Xu
,
J.
,
Wang
,
X.
,
Wan
,
H.
,
Zhao
,
C.
,
Wang
,
H.
, and
Zhu
,
J.
, “
Tropical cyclone size estimation based on deep learning using infrared and microwave satellite data
,”
Front. Mar. Sci.
9
,
1077901
(
2022
).
285.
Yamaguchi
,
M.
,
Ishida
,
J.
,
Sato
,
H.
, and
Nakagawa
,
M.
, “
WGNE intercomparison of tropical cyclone forecasts by operational NWP models: A quarter century and beyond
,”
Bull. Am. Meteorol. Soc.
98
(
11
),
2337
2349
(
2017
).
286.
Yan
,
D.
and
Zhang
,
T.
, “
Research progress on tropical cyclone parametric windfield models and their application
,”
Reg. Stud. Mar. Sci.
51
(
2022
),
102207
(
2022
).
287.
Yang
,
C.-Y.
,
Ma
,
C.
, and
Yang
,
M.-H.
, “
Single-image super-resolution: A benchmark
,” in
Computer Vision – ECCV 2014
, Lecture Notes in Computer Science Vol. 8692, edited by
Fleet
,
D.
,
Pajdla
,
T.
,
Schiele
,
B.
, and
Tuytelaars
,
T.
(
Springer
,
Cham
,
2014
).
288.
Yang
,
Q.
,
Lee
,
C.-Y.
,
Tippett
,
M. K.
,
Chavas
,
D. R.
, and
Knutson
,
T. R.
, “
Machine learning-based hurricane wind reconstruction
,”
Weather Forecast.
37
,
477
493
(
2022
).
289.
Yuan
,
Y. L.
,
Hua
,
F.
, and
Pan
,
Z. D.
, “
LAGFD-WAM numerical wave model-I. Basic physical model
,”
Acta Oceanol. Sin.
10
(
4
),
483
488
(
1991
).
290.
Yuan
,
Y. L.
,
Hua
,
F.
, and
Pan
,
Z. D.
, “
LAGFD-WAM numerical wave model-II. Characteristics inlaid scheme and its application
,”
Acta Oceanol. Sin.
11
(
1
),
13
23
(
1992
).
291.
Zambon
,
J. B.
,
He
,
R.
,
Warner
,
J. C.
, and
Hegermiller
,
C. A.
, “
Impact of SST and surface waves on hurricane florence (2018): A coupled modeling investigation
,”
Weather Forecast.
36
(
5
),
1713
1734
(
2021
).
292.
Zhang
,
G.
,
Wang
,
Z.
,
Dunkerton
,
T. J.
,
Peng
,
M. S.
, and
Magnusdottir
,
G.
, “
Extratropical impacts on atlantic tropical cyclone activity
,”
J. Atmos. Sci.
73
,
1401
1418
(
2016
).
293.
Zhang
,
J.
,
Huang
,
L.
,
Wen
,
Y.
, and
Deng
,
J.
, “
A distributed coupled atmosphere-wave-ocean model for typhoon wave numerical simulation
,”
Int. J. Comput. Math.
86
(
12
),
2095
2103
(
2009a
).
294.
Zhang
,
J. A.
,
Drennan
,
W. M.
,
Black
,
P. G.
, and
French
,
J. R.
, “
Turbulence structure of the hurricane boundary layer between the outer rainbands
,”
J. Atmos. Sci.
66
(
8
),
2455
2467
(
2009b
).
295.
Zhang
,
J. A.
,
Atlas
,
R.
,
Emmitt
,
G. D.
,
Bucci
,
L.
, and
Ryan
,
K.
, “
Airborne Doppler wind Lidar observations of the tropical cyclone boundary layer
,”
Remote Sens.
10
,
825
(
2018
).
296.
Zhang
,
R.
and
Shen
,
X.
, “
On the development of the GRAPES – A new generation of the national operational NWP system in China, Chinese
,”
Sci. Bull.
53
,
3429
3432
(
2008
).
297.
Zhang
,
S.
,
Xu
,
S.
,
Fu
,
H.
,
Wu
,
L.
,
Liu
,
Z.
,
Gao
,
Y.
et al, “
Toward Earth system modeling with resolved clouds and ocean submesoscales on heterogeneous many-core HPCs
,”
Nat. Sci. Rev.
10
(
6
),
nwad069
(
2023a
).
298.
Zhang
,
S.
,
Yuan
,
Y.
, and
Zheng
,
Q.
, “
Modeling of the eddy viscosity by breaking waves
,”
Acta Oceanol. Sin.
26
(
6
),
116
123
(
2007
).
299.
Zhang
,
W.
,
Zhang
,
J.
,
Liu
,
Q.
,
Sun
,
J.
,
Li
,
R.
, and
Guan
,
C.
, “
Effects of surface wave-induced mixing and wave-affected exchange coefficients on tropical cyclones
,”
Remote Sens.
15
(
6
),
1594
(
2023b
).
300.
Zhang
,
W.
,
Zhao
,
D.
,
Zhu
,
D.
,
Li
,
J.
,
Guan
,
C.
, and
Sun
,
J.
, “
A numerical investigation of the effect of wave-induced mixing on tropical cyclones using a coupled ocean-atmosphere-wave model
,”
J. Geophys. Res.
127
(
13
),
1
23
, https://doi.org/10.1029/2021JD036290 (
2022
).
301.
Zhao
,
B.
,
Qiao
,
F.
,
Cavaleri
,
L.
,
Wang
,
G.
,
Bertotti
,
L.
, and
Liu
,
L.
, “
Sensitivity of typhoon modeling to surface waves and rainfall
,”
J. Geophys. Res.
122
(
3
),
1702
1723
, https://doi.org/10.1002/2016JC012262 (
2017
).
302.
Zhao
,
B.
,
Wang
,
G.
,
Zhang
,
J. A.
,
Liu
,
L.
,
Liu
,
J.
,
Xu
,
J.
,
Yu
,
H.
,
Zhao
,
C.
,
Yu
,
X.
,
Sun
,
C.
, and
Qiao
,
F.
, “
The effects of ocean surface waves on tropical cyclone intensity: Numerical simulations using a regional atmosphere-ocean-wave coupled model
,”
J. Geophys. Res.
127
(
11
),
e2022JC019015
, https://doi.org/10.1029/2022JC019015 (
2022
).
303.
Zhu
,
G.
,
Li
,
Q.
,
Zhao
,
W.
,
Ly
,
X.
,
Qian
,
C.
, and
Qian
,
Q.
, “
Tropical cyclones intensity prediction in the Western North Pacific using gradient boosted regression tree model
,”
Front. Earth Sci.
10
,
929115
(
2022
).
304.
Zhuo
,
J.-Y.
and
Tan
,
Z.-M.
, “
Physics-augmented deep learning to improve tropical cyclone intensity and size estimation from satellite imagery
,”
Mon. Weather Rev.
140
,
2097
2113
(
2021
).
You do not currently have access to this content.