Power-to-gas technology and demand response strategy are effective approaches to improve the flexibility and efficiency of energy systems. This paper proposes a multi-objective operation optimization model for an electro-thermal integrated energy system considering power to gas and demand response strategies. First, the structure of integrated energy system and the demand response model of different types of electro-thermal loads are proposed. Second, the operation optimization model of integrated energy system is established with three objectives of total cost minimization, carbon emission minimization, and energy curtailment rate minimization. A hybrid intelligent algorithm combining multi-objective particle swarm optimization and VlseKriterijumska Optimizacija I Kompromisno Resenje technique is employed to solve the proposed model. Then, an industrial park in North China is studied. The results indicate that power to gas can reduce the total cost, carbon emission, and energy curtailment rate by 8.18%, 11.92%, and 75.80%, respectively, and the demand response also has a positive impact on system performance.

1.
J.
Sun
,
N.
Ruze
,
J.
Zhang
,
J.
Shi
, and
B.
Shen
, “
Capacity planning and optimization for integrated energy system in industrial park considering environmental externalities
,”
Renewable Energy
167
,
56
65
(
2021
).
2.
T.
Bo
,
G.
Gangfeng
,
X.
Xiangwu
, and
Y.
Xiu
, “
Integrated energy system configuration optimization for multi-zone heat-supply network interaction
,”
Energies
11
,
3052
(
2018
).
3.
M.
Bailera
,
B.
Peña
,
P.
Lisbona
, and
L. M.
Romeo
, “
Decision-making methodology for managing photovoltaic surplus electricity through power to as: Combined heat and power in urban buildings
,”
Appl. Energy
228
,
1032
1045
(
2018
).
4.
Y.-L.
Liang
,
H.
Zhang
,
C.-T.
Yang
, and
K.-J.
Li
, “
Research on optimization scheduling of integrated electricity-gas system considering carbon trading and P2G operation characteristics
,”
Electr. Power Syst. Res.
225
,
109797
(
2023
).
5.
X.
Yang
,
Z.
Zhang
,
L.
Mei
,
X.
Wang
,
Y.
Deng
,
S.
Wei
et al, “
Optimal configuration of improved integrated energy system based on stepped carbon penalty response and improved power to gas
,”
Energy
263
,
125985
(
2023
).
6.
E.
Alizad
,
H.
Rastegar
, and
F.
Hasanzad
, “
Dynamic planning of power-to-gas integrated energy hub considering demand response programs and future market conditions
,”
Int. J. Electr. Power Energy Syst.
143
,
108503
(
2022
).
7.
Y.
Li
,
W.
Liu
,
M.
Shahidehpour
,
F.
Wen
,
K.
Wang
, and
Y.
Huang
, “
Optimal operation strategy for integrated natural gas generating unit and power-to-gas conversion facilities
,”
IEEE Trans. Sustainable Energy
9
,
1870
1879
(
2018
).
8.
J.
Jiang
,
L.
Zhang
,
X.
Wen
,
E.
Valipour
, and
S.
Nojavan
, “
Risk-based performance of power-to-gas storage technology integrated with energy hub system regarding downside risk constrained approach
,”
Int. J. Hydrogen Energy
47
,
39429
39442
(
2022
).
9.
G.
Fambri
,
C.
Diaz-Londono
,
A.
Mazza
,
M.
Badami
,
T.
Sihvonen
, and
R.
Weiss
, “
Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration
,”
Appl. Energy
312
,
118743
(
2022
).
10.
S. A.
Mansouri
,
E.
Nematbakhsh
,
A.
Ahmarinejad
,
A. R.
Jordehi
,
M. S.
Javadi
, and
S. A. A.
Matin
, “
A multi-objective dynamic framework for design of energy hub by considering energy storage system, power-to-gas technology and integrated demand response program
,”
J. Energy Storage
50
,
104206
(
2022
).
11.
Y.
Li
,
F.
Zhang
,
Y.
Li
, and
Y.
Wang
, “
An improved two-stage robust optimization model for CCHP-P2G microgrid system considering multi-energy operation under wind power outputs uncertainties
,”
Energy
223
,
120048
(
2021
).
12.
S.
Zhou
,
K.
Sun
,
Z.
Wu
,
W.
Gu
,
G.
Wu
,
Z.
Li
et al, “
Optimized operation method of small and medium-sized integrated energy system for P2G equipment under strong uncertainty
,”
Energy
199
,
117269
(
2020
).
13.
M.
Yu
and
S. H.
Hong
, “
Incentive-based demand response considering hierarchical electricity market: A Stackelberg game approach
,”
Appl. Energy
203
,
267
279
(
2017
).
14.
J.
Gao
,
Z.
Ma
, and
F.
Guo
, “
The influence of demand response on wind-integrated power system considering participation of the demand side
,”
Energy
178
,
723
738
(
2019
).
15.
M.
Rahmani-andebili
, “
Modeling nonlinear incentive-based and price-based demand response programs and implementing on real power markets
,”
Electr. Power Syst. Res.
132
,
115
124
(
2016
).
16.
M.
Rahmani-andebili
, “
Nonlinear demand response programs for residential customers with nonlinear behavioral models
,”
Energy Build.
119
,
352
362
(
2016
).
17.
A.
Ajoulabadi
,
S. N.
Ravadanegh
, and
B.
Mohammadi-Ivatloo
, “
Flexible scheduling of reconfigurable microgrid-based distribution networks considering demand response program
,”
Energy
196
,
117024
(
2020
).
18.
K.
Mckenna
and
A.
Keane
, “
Residential load modeling of price-based demand response for network impact studies
,”
IEEE Trans. Smart Grid
7
,
2285
2294
(
2016
).
19.
P.
Liu
,
T.
Ding
,
Z.
Zou
, and
Y.
Yang
, “
Integrated demand response for a load serving entity in multi-energy market considering network constraints
,”
Appl. Energy
250
,
512
529
(
2019
).
20.
A.
Mansour-Saatloo
,
M.
Agabalaye-Rahvar
,
M. A.
Mirzaei
,
B.
Mohammadi-Ivatloo
,
M.
Abapour
, and
K.
Zare
, “
Robust scheduling of hydrogen based smart micro energy hub with integrated demand response
,”
J. Cleaner Prod.
267
,
122041
(
2020
).
21.
Y.
Wang
,
Y.
Ma
,
F.
Song
,
Y.
Ma
, and
F.
Zhang
, “
Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response
,”
Energy
205
,
118022
(
2020
).
22.
Z.
Tan
,
G.
De
,
M.
Li
,
H.
Lin
,
S.
Yang
,
L.
Huang
et al, “
Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine
,”
J. Cleaner Prod.
248
,
119252
(
2020
).
23.
F.
Wei
,
Q. H.
Wu
,
Z. X.
Jing
,
J. J.
Chen
, and
X. X.
Zhou
, “
Optimal unit sizing for small-scale integrated energy systems using multi-objective interval optimization and evidential reasoning approach
,”
Energy
111
,
933
946
(
2016
).
24.
S.
Yang
,
Z.
Tan
,
H.
Lin
,
P.
Li
,
G.
De
,
F.
Zhou
et al, “
A two-stage optimization model for park Integrated energy system operation and benefit allocation considering the effect of time-Of-use energy price
,”
Energy
195
,
117013
(
2020
).
25.
D.
Wu
,
Z.
Han
,
Z.
Liu
,
P.
Li
, and
X.
Yang
, “
Comparative study of optimization method and optimal operation strategy for multi-scenario integrated energy system
,”
Energy
217
,
119311
(
2021
).
26.
H.
Hu
,
X.
Sun
,
B.
Zeng
,
D.
Gong
, and
Y.
Zhang
, “
Enhanced evolutionary multi-objective optimization-based dispatch of coal mine integrated energy system with flexible load
,”
Appl. Energy
307
,
118130
(
2022
).
27.
X.
Zhang
and
Y.
Zhang
, “
Environment-friendly and economical scheduling optimization for integrated energy system considering power-to-gas technology and carbon capture power plant
,”
J. Cleaner Prod.
276
,
123348
(
2020
).
28.
Z.
Tan
,
S.
Yang
,
H.
Lin
,
G.
De
, and
F.
Zhou
, “
Multi-scenario operation optimization model for park integrated energy system based on multi-energy demand response
,”
Sustainable Cities Soc.
53
,
101973
(
2020
).
29.
T.
Wu
,
S.
Bu
,
X.
Wei
,
G.
Wang
, and
B.
Zhou
, “
Multitasking multi-objective operation optimization of integrated energy system considering biogas-solar-wind renewables
,”
Energy Convers. Manage.
229
,
113736
(
2021
).
30.
S.
Yang
,
Z.
Tan
,
R.
Zhao
,
G.
De
,
H.
Li
,
L.
Ju
et al, “
Operation optimization and income distribution model of park integrated energy system with power-to-gas technology and energy storage
,”
J. Cleaner Prod.
247
,
119090
(
2020
).
31.
X.
Li
,
D.
Gui
,
Z.
Zhao
,
X.
Li
,
X.
Wu
,
Y.
Hua
et al, “
Operation optimization of electrical-heating integrated energy system based on concentrating solar power plant hybridized with combined heat and power plant
,”
J. Cleaner Prod.
289
,
125712
(
2021
).
32.
Y.
Wang
,
Y.
Wang
,
Y.
Huang
,
J.
Yang
,
Y.
Ma
,
H.
Yu
et al, “
Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network
,”
Appl. Energy
251
,
113410
(
2019
).
33.
X.
Luo
,
Y.
Liu
,
P.
Feng
,
Y.
Gao
, and
Z.
Guo
, “
Optimization of a solar-based integrated energy system considering interaction between generation, network, and demand side
,”
Appl. Energy
294
,
116931
(
2021
).
34.
J.
Zhong
,
Y.
Li
,
Y.
Cao
,
Y.
Tan
,
Y.
Peng
,
Z.
Zeng
et al, “
Stochastic optimization of integrated energy system considering network dynamic characteristics and psychological preference
,”
J. Cleaner Prod.
275
,
122992
(
2020
).
35.
Y.
Wang
,
H.
Hu
,
X.
Sun
,
Y.
Zhang
, and
D.
Gong
, “
Unified operation optimization model of integrated coal mine energy systems and its solutions based on autonomous intelligence
,”
Appl. Energy
328
,
120106
(
2022
).
36.
X.
Ding
,
Q.
Guo
,
T.
Qiannan
, and
K.
Jermsittiparsert
, “
Economic and environmental assessment of multi-energy microgrids under a hybrid optimization technique
,”
Sustainable Cities Soc.
65
,
102630
(
2021
).
37.
Y.
Wang
,
Z.
Liu
,
C.
Cai
,
L.
Xue
,
Y.
Ma
,
H.
Shen
et al, “
Research on the optimization method of integrated energy system operation with multi-subject game
,”
Energy
245
,
123305
(
2022
).
38.
G.
Angenendt
,
S.
Zurmühlen
,
F.
Rücker
,
H.
Axelsen
, and
D. U.
Sauer
, “
Optimization and operation of integrated homes with photovoltaic battery energy storage systems and power-to-heat coupling
,”
Energy Convers. Manage.: X
1
,
100005
(
2019
).
39.
Y.
Cheng
,
M.
Liu
,
H.
Chen
, and
Z.
Yang
, “
Optimization of multi-carrier energy system based on new operation mechanism modelling of power-to-gas integrated with CO2-based electrothermal energy storage
,”
Energy
216
,
119269
(
2021
).
40.
J.
Wang
,
K.
Xue
,
Y.
Guo
,
J.
Ma
,
X.
Zhou
,
M.
Liu
et al, “
Multi-objective capacity programming and operation optimization of an integrated energy system considering hydrogen energy storage for collective energy communities
,”
Energy Convers. Manage.
268
,
116057
(
2022
).
41.
L.-L.
Li
,
Y.
Miao
,
M. K.
Lim
,
K.
Sethanan
, and
M.-L.
Tseng
, “
Integrated energy system for low-carbon economic operation optimization: Pareto compromise programming and master-slave game
,”
Renewable Energy
222
,
119946
(
2024
).
42.
Y.
Cui
,
Y.
Xu
,
T.
Huang
,
Y.
Wang
,
D.
Cheng
, and
Y.
Zhao
, “
Low-carbon economic dispatch of integrated energy systems that incorporate CCPP-P2G and PDR considering dynamic carbon trading price
,”
J. Cleaner Prod.
423
,
138812
(
2023
).
43.
M.
Chen
,
H.
Lu
,
X.
Chang
, and
H.
Liao
, “
An optimization on an integrated energy system of combined heat and power, carbon capture system and power to gas by considering flexible load
,”
Energy
273
,
127203
(
2023
).
44.
C.-H.
Wang
,
D.
Zhao
,
A.
Tsutsumi
, and
S.
You
, “
Sustainable energy technologies for energy saving and carbon emission reduction
,”
Appl. Energy
194
,
223
224
(
2017
).
45.
B.
Qiao
and
J.
Liu
, “
Multi-objective dynamic economic emission dispatch based on electric vehicles and wind power integrated system using differential evolution algorithm
,”
Renewable Energy
154
,
316
336
(
2020
).
46.
C. A.
Coello Coello
and
M. S.
Lechuga
, “
MOPSO: A proposal for multiple objective particle swarm optimization
,”
Proceedings of the 2002 Congress on Evolutionary Computation CEC'02 (Cat. No. 02TH8600)
(
IEEE
,
2002
), Vol.
2
, pp.
1051
1056
.
47.
M. A.
Ehyaei
,
A.
Ahmadi
,
M.
El Haj Assad
, and
T.
Salameh
, “
Optimization of parabolic through collector (PTC) with multi-objective swarm optimization (MOPSO) and energy, exergy and economic analyses
,”
J. Cleaner Prod.
234
,
285
296
(
2019
).
48.
F.
Xu
,
J.
Liu
,
S.
Lin
,
Q.
Dai
, and
C.
Li
, “
A multi-objective optimization model of hybrid energy storage system for non-grid-connected wind power: A case study in China
,”
Energy
163
,
585
603
(
2018
).
49.
S.
Mirjalili
, “
The ant lion optimizer
,”
Adv. Eng. Software
83
,
80
98
(
2015
).
50.
S.
Mirjalili
,
P.
Jangir
, and
S.
Saremi
, “
Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems
,”
Appl. Intell.
46
,
79
95
(
2017
).
51.
K.
Deb
,
A.
Pratap
,
S.
Agarwal
, and
T.
Meyarivan
, “
A fast and elitist multiobjective genetic algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
6
,
182
197
(
2002
).
You do not currently have access to this content.