Numerical weather prediction (NWP) is widely used for day-ahead solar irradiance forecast, which is essential for applications in day-ahead energy market and energy management of different scales ranging from public level to civil level. In the literature, many NWP correction methods have been proposed to obtain more accurate solar irradiance forecast. However, when facing different real-world scenarios, it is crucial to efficiently design corresponding correction schemes, which require a detailed and reliable error evaluation foundation. To solve this problem, the performance for day-ahead NWP Global Horizontal Irradiance (GHI) forecast is evaluated under different weather conditions and seasons. The statistical analysis was conducted at each time of day and each NWP GHI forecast level with both publicly available datasets and actual field dataset, aiming to explore the detailed error characteristics of NWP GHI forecasts. The results demonstrate variations in NWP GHI error across diverse weather conditions and seasons, which indicates that future NWP GHI corrections should be developed under different weather conditions and seasons. For weather conditions, NWP GHI forecasts have the lowest accuracy during overcast conditions, followed by cloudy conditions, while the highest accuracy is observed during sunny conditions. Moreover, overestimations are more likely to occur during overcast and cloudy conditions. For seasons, the accuracy of NWP GHI forecasts is generally highest during winter. Additionally, we have summarized some common error characteristics under different weather conditions and seasons. This study provides useful information for improving the accuracy and efficiency of NWP correction works and for the stable operation of power systems.

1.
International Energy Agency
,
World Energy Outlook 2023
(
International Energy Agency
, 2023).
2.
Y.
Fabel
,
B.
Nouri
,
S.
Wilbert
,
N.
Blum
,
D.
Schnaus
,
R.
Triebel
,
L. F.
Zarzalejo
,
E.
Ugedo
,
J.
Kowalski
, and
R.
Pitz-Paal
, “
Combining deep learning and physical models: A benchmark study on all-sky imager-based solar nowcasting systems
,”
Sol. RRL
8
,
2300808
(
2024
).
3.
Y.
Zhou
,
J.
Wang
,
Z.
Li
, and
H.
Lu
, “
Short-term photovoltaic power forecasting based on signal decomposition and machine learning optimization
,”
Energy Convers. Manage.
267
,
115944
(
2022
).
4.
B.
Nouri
,
N.
Blum
,
S.
Wilbert
, and
L. F.
Zarzalejo
, “
A hybrid solar irradiance nowcasting approach: Combining all sky imager systems and persistence irradiance models for increased accuracy
,”
Sol. RRL
6
,
2100442
(
2022
).
5.
A. H.
Nielsen
,
A.
Iosifidis
, and
H.
Karstoft
, “
IrradianceNet: Spatiotemporal deep learning model for satellite-derived solar irradiance short-term forecasting
,”
Sol. Energy
228
,
659
669
(
2021
).
6.
Z.
Si
,
Y.
Yu
,
M.
Yang
, and
P.
Li
, “
Hybrid solar forecasting method using satellite visible images and modified convolutional neural networks
,”
IEEE Trans. Ind. Appl.
57
,
5
16
(
2021
).
7.
S.
Shan
,
C.
Li
,
Z.
Ding
,
Y.
Wang
,
K.
Zhang
, and
H.
Wei
, “
Ensemble learning based multi-modal intra-hour irradiance forecasting
,”
Energy Convers. Manage.
270
,
116206
(
2022
).
8.
T.
Zhu
,
H.
Zhou
,
H.
Wei
,
X.
Zhao
,
K.
Zhang
, and
J.
Zhang
, “
Inter-hour direct normal irradiance forecast with multiple data types and time-series
,”
J. Mod. Power Syst. Clean Energy
7
,
1319
1327
(
2019
).
9.
M.
Diagne
,
M.
David
,
P.
Lauret
,
J.
Boland
, and
N.
Schmutz
, “
Review of solar irradiance forecasting methods and a proposition for small-scale insular grids
,”
Renewable Sustainable Energy Rev.
27
,
65
76
(
2013
).
10.
M.
Guermoui
,
F.
Melgani
,
K.
Gairaa
, and
M. L.
Mekhalfi
, “
A comprehensive review of hybrid models for solar radiation forecasting
,”
J. Cleaner Prod.
258
,
120357
(
2020
).
11.
X.
Zhao
,
H.
Wei
,
H.
Wang
,
T.
Zhu
, and
K.
Zhang
, “
3D-CNN-based feature extraction of ground-based cloud images for direct normal irradiance prediction
,”
Sol. Energy
181
,
510
518
(
2019
).
12.
K.
Hu
,
L.
Wang
,
W.
Li
,
S.
Cao
, and
Y.
Shen
, “
Forecasting of solar radiation in photovoltaic power station based on ground-based cloud images and bp neural network
,”
IET Gener., Transm. Distrib.
16
,
333
350
(
2022
).
13.
Z.
Zhen
,
X.
Zhang
,
S.
Mei
,
X.
Chang
,
H.
Chai
,
R.
Yin
, and
F.
Wang
, “
Ultra-short-term irradiance forecasting model based on ground-based cloud image and deep learning algorithm
,”
IET Renewable Power Gener.
16
,
2604
2616
(
2022
).
14.
D. J.
Pedregal
and
J. R.
Trapero
, “
Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance
,”
Appl. Energy
298
,
117155
(
2021
).
15.
A.
Sharma
and
A.
Kakkar
, “
Forecasting daily global solar irradiance generation using machine learning
,”
Renewable Sustainable Energy Rev.
82
,
2254
2269
(
2018
).
16.
B.
Schulz
,
M.
El Ayari
,
S.
Lerch
, and
S.
Baran
, “
Post-processing numerical weather prediction ensembles for probabilistic solar irradiance forecasting
,”
Sol. Energy
220
,
1016
1031
(
2021
).
17.
D.
Koster
,
D.
Fiorelli
,
P.
Bruneau
, and
C.
Braun
, “
Single-site forecasts for 130 photovoltaic systems at distribution system operator level, using a hybrid-physical approach, to improve grid-integration and enable future smart-grid operation
,”
Sol. RRL
7
,
2200652
(
2023
).
18.
W.
Traunmüller
and
G.
Steinmaurer
, “
Solar irradiance forecasting, benchmarking of different techniques and applications of energy meteorology
,” in
EuroSun
,
2010
.
19.
J.
Huang
and
M.
Thatcher
, “
Assessing the value of simulated regional weather variability in solar forecasting using numerical weather prediction
,”
Sol. Energy
144
,
529
539
(
2017
).
20.
S.
Theocharides
,
G.
Makrides
,
A.
Livera
,
M.
Theristis
,
P.
Kaimakis
, and
G. E.
Georghiou
, “
Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing
,”
Appl. Energy
268
,
115023
(
2020
).
21.
R.
Huva
,
H.
Verbois
, and
W.
Walsh
, “
Comparisons of next-day solar forecasting for Singapore using 3DVAR and 4DVAR data assimilation approaches with the WRF model
,”
Renewable Energy
147
,
663
671
(
2020
).
22.
R. H.
Inman
,
H. T. C.
Pedro
, and
C. F. M.
Coimbra
, “
Solar forecasting methods for renewable energy integration
,”
Prog. Energy Combust. Sci.
39
,
535
576
(
2013
).
23.
E. B.
Ssekulima
,
M. B.
Anwar
,
A. A.
Hinai
, and
M. S.
El Moursi
, “
Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: A review
,”
IET Renewable Power Gener.
10
,
885
989
(
2016
).
24.
L.
Haochen
,
Y.
Chen
,
X.
Jiangjiang
,
W.
Yingchun
, and
Z.
Jiang
, “
A model output machine learning method for grid temperature forecasts in the Beijing area
,”
Adv. Atmos. Sci.
36
,
112
126
(
2019
).
25.
H.
Verbois
,
Y.-M.
Saint-Drenan
,
A.
Thiery
, and
P.
Blanc
, “
Statistical learning for NWP post-processing: A benchmark for solar irradiance forecasting
,”
Sol. Energy
238
,
132
149
(
2022
).
26.
A.
Rincón
,
O.
Jorba
,
M.
Frutos
,
L.
Alvarez
,
F. P.
Barrios
, and
J. A.
González
, “
Bias correction of global irradiance modelled with weather and research forecasting model over Paraguay
,”
Sol. Energy
170
,
201
211
(
2018
).
27.
S.
Alessandrini
,
L. D.
Monache
,
S.
Sperati
, and
G.
Cervone
, “
An analog ensemble for short-term probabilistic solar power forecast
,”
Appl. Energy
157
,
95
110
(
2015
).
28.
T.
Takamatsu
,
H.
Ohtake
,
T.
Oozeki
,
T.
Nakaegawa
,
Y.
Honda
, and
M.
Kazumori
, “
Regional solar irradiance forecast for Kanto region by support vector regression using forecast of meso-ensemble prediction system
,”
Energies
14
,
3245
(
2021
).
29.
R.
Azimi
,
M.
Ghayekhloo
, and
M.
Ghofrani
, “
A hybrid method based on a new clustering technique and multilayer perceptron neural networks for hourly solar radiation forecasting
,”
Energy Convers. Manage.
118
,
331
344
(
2016
).
30.
C. S.
Lai
,
C.
Zhong
,
K.
Pan
,
W. W. Y.
Ng
, and
L. L.
Lai
, “
A deep learning based hybrid method for hourly solar radiation forecasting
,”
Expert Syst. Appl.
177
,
114941
(
2021
).
31.
J. F.
Mejia
,
M.
Giordano
, and
E.
Wilcox
, “
Conditional summertime day-ahead solar irradiance forecast
,”
Sol. Energy
163
,
610
622
(
2018
).
32.
G.
Woo
,
C.
Liu
,
D.
Sahoo
,
A.
Kumar
, and
S.
Hoi
, “
Cost: Contrastive learning of disentangled seasonal-trend representations for time series forecasting
,” arXiv:2202.01575 (
2022
).
33.
W.
Dou
,
K.
Wang
,
S.
Shan
,
C.
Li
,
Y.
Wang
,
K.
Zhang
,
H.
Wei
, and
V.
Sreeram
, “
Day-ahead Numerical Weather Prediction solar irradiance correction using a clustering method based on weather conditions
,”
Appl. Energy
365
,
123239
(
2024
).
34.
J.
Thaker
and
R.
Höller
, “
Evaluation of high resolution WRF solar
,”
Energies
16
,
3518
(
2023
).
35.
B.
Joshi
,
M.
Kay
,
J. K.
Copper
, and
A. B.
Sproul
, “
Evaluation of solar irradiance forecasting skills of the Australian Bureau of Meteorology's ACCESS models
,”
Sol. Energy
188
,
386
402
(
2019
).
36.
V.
Lara-Fanego
,
J.
Ruiz-Arias
,
D.
Pozo-Vázquez
,
F.
Santos-Alamillos
, and
J.
Tovar-Pescador
, “
Evaluation of the WRF model solar irradiance forecasts in Andalusia (southern Spain)
,”
Sol. Energy
86
,
2200
2217
(
2012
).
37.
P.
Mathiesen
and
J.
Kleissl
, “
Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States
,”
Sol. Energy
85
,
967
977
(
2011
).
38.
W.
Yin
,
Y.
Han
,
H.
Zhou
,
M.
Ma
,
L.
Li
, and
H.
Zhu
, “
A novel non-iterative correction method for short-term photovoltaic power forecasting
,”
Renewable Energy
159
,
23
32
(
2020
).
39.
A.
Razagui
,
K.
Abdeladim
,
K.
Bouchouicha
,
N.
Bachari
,
S.
Semaoui
, and
A. H.
Arab
, “
A new approach to forecast solar irradiances using WRF and libRadtran models, validated with MERRA-2 reanalysis data and pyranometer measures
,”
Sol. Energy
221
,
148
161
(
2021
).
40.
J.
Yang
,
J.-H.
Kim
,
P. A.
Jiménez
,
M.
Sengupta
,
J.
Dudhia
,
Y.
Xie
,
A.
Golnas
, and
R.
Giering
, “
An efficient method to identify uncertainties of WRF-solar variables in forecasting solar irradiance using a tangent linear sensitivity analysis
,”
Sol. Energy
220
,
509
522
(
2021
).
41.
Y.
Liu
,
Y.
Qian
,
S.
Feng
,
L. K.
Berg
,
T. W.
Juliano
,
P. A.
Jiménez
,
E.
Grimit
, and
Y.
Liu
, “
Calibration of cloud and aerosol related parameters for solar irradiance forecasts in WRF-solar
,”
Sol. Energy
241
,
1
12
(
2022
).
42.
D.
Yang
,
W.
Wang
,
J. M.
Bright
,
C.
Voyant
,
G.
Notton
,
G.
Zhang
, and
C.
Lyu
, “
Verifying operational intra-day solar forecasts from ECMWF and NOAA
,”
Sol. Energy
236
,
743
755
(
2022
).
43.
H. T. C.
Pedro
,
D. P.
Larson
, and
C. F. M.
Coimbra
, “
A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods
,”
J. Renewable Sustainable Energy
11
,
036102
(
2019
).
44.
D.
Yang
, “
SolarData package update v1.1: R functions for easy access of Baseline Surface Radiation Network (BSRN)
,”
Sol. Energy
188
,
970
975
(
2019
).
45.
R.
Ramakrishna
,
A.
Scaglione
,
V.
Vittal
,
E.
Dall'Anese
, and
A.
Bernstein
, “
A model for joint probabilistic forecast of solar photovoltaic power and outdoor temperature
,”
IEEE Trans. Signal Process.
67
,
6368
6383
(
2019
).
46.
S.
Shan
,
Z.
Ding
,
K.
Zhang
,
H.
Wei
,
C.
Li
, and
Q.
Zhao
, “
ACGL-TR: A deep learning model for spatio-temporal short-term irradiance forecast
,”
Energy Convers. Manage.
284
,
116970
(
2023
).
47.
M.
Pierro
,
F.
Bucci
,
M. D.
Felice
,
E.
Maggioni
,
D.
Moser
,
A.
Perotto
,
F.
Spada
, and
C.
Cornaro
, “
Multi-model ensemble for day ahead prediction of photovoltaic power generation
,”
Sol. Energy
134
,
132
146
(
2016
).
You do not currently have access to this content.