The aim of this study was to develop software for reading and managing sunshine duration recorded by Campbell–Stokes heliographs. The software employs digital image processing techniques, such as mean filtering, thresholding, and opening, to interpret digitized images of record cards containing sunshine duration measurements. The software's validation was conducted by comparing global solar irradiation measurements with estimates of global solar irradiation generated from sunshine duration obtained automatically by the software and manually by a meteorological observer. Estimates generated by the automated method showed better performance (mean bias error: 0.084, relative mean bias error: 0.500, root mean square error: 2.045, relative root mean square error: 12.109, and correlation coefficient: 0.954). Additionally, the automated method was significantly faster, taking an average of 41.825 s less than the manual method to perform the readings. This suggests that the software can be used to automate, standardize, and speed up reading sunshine duration data. Furthermore, the use of the software enabled the creation of a daily sunshine duration database, common in meteorological stations, and an hourly database, which is a novelty due to the complexity of the manual reading method.

1.
M. S.
Anis
,
B.
Jamil
,
M. A.
Ansari
, and
E.
Bellos
, “
Generalized models for estimation of global solar radiation based on sunshine duration and detailed comparison with the existing: A case study for India
,”
Sustain. Energy Technol. Assess.
31
,
179
198
(
2019
).
2.
A.
Das
,
J.
Park
, and
J.
Park
, “
Estimation of available global solar radiation using sunshine duration over South Korea
,”
J. Atmos. Sol.: Terr. Phys.
134
,
22
29
(
2015
).
3.
H.
Li
,
W.
Ma
,
Y.
Lian
,
X.
Wang
, and
L.
Zhao
, “
Global solar radiation estimation with sunshine duration in Tibet, China
,”
Renewable Energy
36
(
11
),
3141
3145
(
2011
).
4.
E. B.
Pereira
et al,
Atlas brasileiro de energia solar
, 2nd ed. (
INPE
,
São José Dos Campos
,
2017
), p.
88
.
5.
M.
Paulescu
et al, “
Ångström–Prescott equation: Physical basis, empirical models and sensitivity analysis
,”
Renewable Sustain. Energy Rev.
62
,
495
506
(
2016
).
6.
A. P.
Souza
,
J. F.
Escobedo
,
A.
Dal Pai
, and
E. N.
Gomes
, “
Estimativa das componentes da radiação solar incidente em superfícies inclinadas baseadas na radiação solar global horizontal
,”
Rev. Bras. Eng. Agrícola Ambient
15
(
3
),
277
288
(
2011
).
7.
Z. R.
Tahir
et al, “
Estimation of daily diffuse solar radiation from clearness index, sunshine duration and meteorological parameters for different climatic conditions
,”
Sustain. Energy Technol. Assess.
47
,
101544
(
2021
).
8.
X.
Liu
,
Y.
Xu
,
X.
Zhong
,
W.
Zhang
,
J. R.
Porter
, and
W.
Liu
, “
Assessing models for parameters of the Ångström–Prescott formula in China
,”
Appl. Energy
96
,
327
338
(
2012
).
9.
M. A.
Varejão-Silva
,
Meteorologia e Climatologia
, 2nd ed. (
Versão Digital
,
Recife
,
2006
), p.
449
, https://icat.ufal.br/laboratorio/clima/data/uploads/pdf/METEOROLOGIA_E_CLIMATOLOGIA_VD2_Mar_2006.pdf (accessed February 17, 2024).
10.
N.
Zhao
,
X.
Zeng
, and
S.
Han
, “
Solar radiation estimation using sunshine hour and air pollution index in China
,”
Energy Convers. Manag.
76
,
846
851
(
2013
).
11.
M.
El-Metwally
, “
Simple new methods to estimate global solar radiation based on meteorological data in Egypt
,”
Atmos. Res.
69
(
3–4
),
217
239
(
2004
).
12.
M.
Iqbal
,
An Introduction to Solar Radiation
, 1st ed. (
Academic Press
,
Ontario
,
1983
), p.
393
.
13.
M. R.
Raniero
,
M. V. C.
Calça
,
D. M. Z.
Fernando
,
O. C. P.
de Almeida
, and
A.
Dal Pai
, “
Software for automated reading of sunshine duration by Digital Image Processing
,”
IEEE Lat. Am. Trans.
18
(
9
),
1599
1605
(
2021
).
14.
A.
Dal Pai
,
J. F.
Escobedo
,
E.
Dal Pai
,
A. P.
de Oliveira
,
J. R.
Soares
, and
G.
Codato
, “
MEO shadowing method for measuring diffuse solar irradiance: Corrections based on sky cover
,”
Renewable Energy
99
,
754
763
(
2016
).
15.
J. R.
Franco
et al, “
Atualização da normal climatológica e classificação climática de Köppen para o município de Botucatu-SP
,”
Irriga
28
(
1
),
77
92
(
2023
).
16.
Instituto Brasileiro de Geografia e Estatística
, “
Panorama do município de Botucatu – SP
,” https://cidades.ibge.gov.br/brasil/sp/botucatu/panorama (accessed February 17,
2024
).
17.
Prefeitura de
Botucatu
, “
A nossa cidade: Localização
,” https://www.botucatu.sp.gov.br/portal/servicos/1058/localizacao (accessed February 17,
2024
).
18.
J. R.
Franco
,
M. R.
Raniero
,
M. V. C.
Calça
,
S. A.
Rodrigues
,
A. D.
Pai
, and
E. D.
Pai
, “
Análise Comparativa entre medidas meteorológicas da estação convencional e automática da fazenda Lageado no município de Botucatu, São Paulo, Brasil
,”
Rev. Bras. Meteorol.
37
(
2
),
223
232
(
2022
).
19.
Apache Netbeans
, “
About Apache Netbeans
,” https://netbeans.apache.org/front/main/about (accessed February 19,
2024
).
20.
Oracle
, “
Java EE at a Glance
,” https://www.oracle.com/java/technologies/java-ee-glance.html (accessed February 19,
2024
).
21.
Mysql
, “
Why MySQL
,” https://www.mysql.com/why-mysql (accessed February 19,
2024
).
22.
Bootstrap
, “
Introduction
,” https://getbootstrap.com/docs/4.3/getting-started/introduction (accessed February 19,
2024
).
23.
R. C.
Gonzalez
and
R. E.
Woods
,
Processamento Digital de Imagens
, 3rd ed. (
Person Education
,
São Paulo
,
2010
), p.
624
.
24.
H.
Pedrini
and
W. R.
Schwartz
,
Análise de Imagens Digitais: Princípios, Algoritmos e Aplicações
, 1st ed. (
Thomson Learning
,
São Paulo
,
2008
), p.
508
.
25.
O. M.
Filho
and
H.
Vieira Neto
,
Processamento Digital de Imagens
, 1st ed. (
Brasport
,
Rio de Janeiro
,
1999
), p.
307
.
26.
M. B. P.
da Silva
,
J. F.
Escobedo
,
T. J.
Rossi
,
C. M.
dos Santos
, and
S. H. M. G.
da Silva
, “
Performance of the Angstrom-Prescott Model (A-P) and SVM and ANN techniques to estimate daily global solar irradiation in Botucatu/SP/Brazil
,”
J. Atmos. Sol.-Terr. Phys.
160
,
11
23
(
2017
).
27.
A.
Rincón
,
O.
Jorba
,
M.
Frutos
,
L.
Alvarez
,
F. P.
Barrios
, and
J. A.
González
, “
Bias correction of global irradiance modelled with weather and research forecasting model over Paraguay
,”
Sol. Energy
170
,
201
211
(
2018
).
You do not currently have access to this content.