Constructing accurate spatiotemporal correlations is a challenging task in joint prediction of multiple photovoltaic sites. Some advanced algorithms for incorporating other surrounding site information have been proposed, such as graph neural network-based methods, which are usually based on static or dynamic graphs to build spatial dependencies between sites. However, the possibility of the simultaneous existence of multiple spatial dependencies is not considered. This paper establishes a spatiotemporal prediction model based on hybrid spatiotemporal graph neural network. In this model, we apply adaptive hybrid graph learning to learn composite spatial correlations among multiple sites. A temporal convolution module with multi-subsequence temporal data input is used to extract local semantic information to better predict future nonlinear temporal dependencies. A spatiotemporal adaptive fusion module is added to address the issue of integrating diverse spatiotemporal trends among multiple sites. To assess the model's predictive performance, nine solar radiation observation stations were selected in two different climatic environments. The average root mean square error (RMSE) of the constructed model was 38.51 and 49.90 W/m2, with average mean absolute error (MAE) of 14.72 and 23.06 W/m2, respectively. Single-site and multi-site prediction models were selected as baseline models. Compared with the baseline models, the RMSE and MAE reduce by 3.1%–20.8% and 8.9%–32.8%, respectively, across all sites. The proposed model demonstrates the effectiveness of improving accuracy in forecasting solar irradiance through multi-site predictions.

1.
B.
Lorenzi
,
P.
Mariani
,
A.
Reale
,
A.
Di Carlo
,
G.
Chen
, and
D.
Narducci
, “
Practical development of efficient thermoelectric–photovoltaic hybrid systems based on wide-gap solar cells
,”
Appl. Energy
300
,
117343
(
2021
).
2.
D.
Gielen
,
F.
Boshell
,
D.
Saygin
,
M. D.
Bazilian
,
N.
Wagner
, and
R.
Gorini
, “
The role of renewable energy in the global energy transformation
,”
Energy Strategy Rev.
24
,
38
50
(
2019
).
3.
G. M.
Paldino
,
J.
De Stefani
,
F.
De Caro
, and
G.
Bontempi
, “
Does AutoML outperform naive forecasting?
,”
Eng. Proc.
5
,
36
(
2021
).
4.
H.
Wang
,
F.
Sun
, and
W.
Liu
, “
Spatial and temporal patterns as well as major influencing factors of global and diffuse horizontal irradiance over China:1960–2014
,”
Sol. Energy
159
,
601
615
(
2018
).
5.
Z.
Xia
,
Y.
Li
,
R.
Chen
,
D.
Sengupta
,
X.
Guo
,
B.
Xiong
, and
Y.
Niu
, “
Mapping the rapid development of photovoltaic power stations in Northwestern China using remote sensing
,”
Energy Rep.
8
,
4117
4127
(
2022
).
6.
C. M.
Fernández-Peruchena
and
M.
Gastón
, “
A simple and efficient procedure for increasing the temporal resolution of global horizontal solar irradiance series
,”
Renewable Energy
86
,
375
383
(
2016
).
7.
M.
Ajith
and
M.
Martínez-Ramón
, “
Deep learning algorithms for very short term solar irradiance forecasting: A survey
,”
Renewable Sustainable Energy Rev.
182
,
113362
(
2023
).
8.
J.
Antonanzas
,
N.
Osorio
,
R.
Escobar
,
R.
Urraca
,
F. J.
Martinez-de Pison
, and
F.
Antonanzas-Torres
, “
Review of photovoltaic power forecasting
,”
Sol. Energy
136
,
78
111
(
2016
).
9.
A.
Murata
,
H.
Ohtake
, and
T.
Oozeki
, “
Modeling of uncertainty of solar irradiance forecasts on numerical weather predictions with the estimation of multiple confidence intervals
,”
Renewable Energy
117
,
193
201
(
2018
).
10.
Z.
Dong
,
D.
Yang
,
T.
Reindl
, and
W. M.
Walsh
, “
Short-term solar irradiance forecasting using exponential smoothing state space model
,”
Energy
55
,
1104
1113
(
2013
).
11.
S. A.
Haider
,
M.
Sajid
,
H.
Sajid
,
E.
Uddin
, and
Y.
Ayaz
, “
Deep learning and statistical methods for short-and long-term solar irradiance forecasting for Islamabad
,”
Renewable Energy
198
,
51
60
(
2022
).
12.
E.
Lorenz
,
J.
Hurka
,
D.
Heinemann
, and
H. G.
Beyer
, “
Irradiance forecasting for the power prediction of grid-connected photovoltaic systems
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2
,
2
10
(
2009
).
13.
I.
Majumder
,
P.
Dash
, and
R.
Bisoi
, “
Variational mode decomposition based low rank robust kernel extreme learning machine for solar irradiation forecasting
,”
Energy Convers. Manage.
171
,
787
806
(
2018
).
14.
T.
McCandless
,
S.
Haupt
, and
G.
Young
, “
A regime-dependent artificial neural network technique for short-range solar irradiance forecasting
,”
Renewable Energy
89
,
351
359
(
2016
).
15.
M.
Benghanem
and
A.
Mellit
, “
Radial basis function network-based prediction of global solar radiation data: Application for sizing of a stand-alone photovoltaic system at Al-Madinah, Saudi Arabia
,”
Energy
35
,
3751
3762
(
2010
).
16.
L.
Yang
,
X.
Gao
,
Z.
Li
, and
D.
Jia
, “
Intra-day solar irradiation forecast using machine learning with satellite data
,”
Sustainable Energy, Grids Networks
36
,
101212
(
2023
).
17.
R.
Wan
,
S.
Mei
,
J.
Wang
,
M.
Liu
, and
F.
Yang
, “
Multivariate temporal convolutional network: A deep neural networks approach for multivariate time series forecasting
,”
Electronics
8
,
876
(
2019
).
18.
H.
Zang
,
L.
Cheng
,
T.
Ding
,
K. W.
Cheung
,
Z.
Liang
,
Z.
Wei
, and
G.
Sun
, “
Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network
,”
IET Gener., Transm. Distrib.
12
,
4557
4567
(
2018
).
19.
X.
Qing
and
Y.
Niu
, “
Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM
,”
Energy
148
,
461
468
(
2018
).
20.
S.
Ghimire
,
R. C.
Deo
,
N.
Raj
, and
J.
Mi
, “
Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms
,”
Appl. Energy
253
,
113541
(
2019
).
21.
P.
Kumari
and
D.
Toshniwal
, “
Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting
,”
Appl. Energy
295
,
117061
(
2021
).
22.
T.
Limouni
,
R.
Yaagoubi
,
K.
Bouziane
,
K.
Guissi
, and
E. H.
Baali
, “
Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model
,”
Renewable Energy
205
,
1010
1024
(
2023
).
23.
C.
Zhong
,
C. S.
Lai
,
W. W.
Ng
,
Y.
Tao
,
T.
Wang
, and
L. L.
Lai
, “
Multi-view deep forecasting for hourly solar irradiance with error correction
,”
Sol. Energy
228
,
308
316
(
2021
).
24.
J.
Wang
,
J.
Li
,
X.
Wang
,
T.
Wang
, and
Q.
Sun
, “
An quality prediction model based on CNN-BiNLSTM-attention
,”
Environ., Develop. Sustainability
1
16
(
2022
).
25.
R.
Zhang
,
H.
Ma
,
W.
Hua
,
T. K.
Saha
, and
X.
Zhou
, “
Data-driven photovoltaic generation forecasting based on a Bayesian network with spatial–temporal correlation analysis
,”
IEEE Trans. Ind. Inf.
16
,
1635
1644
(
2019
).
26.
X.
Yang
,
Z.
Zhao
,
Y.
Peng
, and
J.
Ma
, “
Research on distributed photovoltaic power prediction based on spatiotemporal information ensemble method
,”
J. Renewable Sustainable Energy
15
,
036102
(
2023
).
27.
M.
Zhang
,
Y.
Sun
,
C.
Feng
,
Z.
Zhen
,
F.
Wang
,
G.
Li
,
D.
Liu
, and
H.
Wang
, “
Graph neural network based short-term solar irradiance forecasting model considering surrounding meteorological factors
,” in
2022 IEEE/IAS 58th Industrial and Commercial Power Systems Technical Conference (I&CPS)
(
IEEE
,
2022
), pp.
1
9
.
28.
Y.
Yu
and
G.
Hu
, “
Short-term solar irradiance prediction based on spatiotemporal graph convolutional recurrent neural network
,”
J. Renewable Sustainable Energy
14
,
053702
(
2022
).
29.
H.
Zang
,
Y.
Zhang
,
L.
Cheng
,
T.
Ding
,
Z.
Wei
, and
G.
Sun
, “
Multi-site solar irradiance forecasting based on adaptive spatiotemporal graph convolutional network
,”
Expert Syst. Appl.
236
,
121313
(
2024
).
30.
J.
Simeunović
,
B.
Schubnel
,
P.-J.
Alet
,
R. E.
Carrillo
, and
P.
Frossard
, “
Interpretable temporal-spatial graph attention network for multi-site PV power forecasting
,”
Appl. Energy
327
,
120127
(
2022
).
31.
B.
Yu
,
H.
Yin
, and
Z.
Zhu
, “
Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting
,” arXiv:1709.04875 (
2017
).
32.
T.
Wu
,
F.
Chen
, and
Y.
Wan
, “
Graph attention LSTM network: A new model for traffic flow forecasting
,” in
2018 5th International Conference on Information Science and Control Engineering (ICISCE)
(
IEEE
,
2018
), pp.
241
245
.
33.
Y.
Xu
,
Y.
Lu
,
C.
Ji
, and
Q.
Zhang
, “
Adaptive graph fusion convolutional recurrent network for traffic forecasting
,”
IEEE Internet Things J.
10
,
11465
11475
(
2023
).
34.
X.
Luo
,
W.
Gan
,
L.
Wang
,
Y.
Chen
, and
E.
Ma
, “
A deep learning prediction model for structural deformation based on temporal convolutional networks
,”
Comput. Intell. Neurosci.
2021
,
8829639
.
35.
M.
Chen
,
Z.
Wei
,
Z.
Huang
,
B.
Ding
, and
Y.
Li
, “
Simple and deep graph convolutional networks
,” in
International Conference on Machine Learning
(
PMLR
,
2020
), pp.
1725
1735
.
36.
M.
Sengupta
,
Y.
Xie
,
A.
Lopez
,
A.
Habte
,
G.
Maclaurin
, and
J.
Shelby
, “
The national solar radiation data base (NSRDB)
,”
Renewable Sustainable Energy Rev.
89
,
51
60
(
2018
).
37.
V.
Demir
and
H.
Citakoglu
, “
Forecasting of solar radiation using different machine learning approaches
,”
Neural Comput. Appl.
35
,
887
906
(
2023
).
38.
A.
Mendyl
,
V.
Demir
,
N.
Omar
,
O.
Orhan
, and
T.
Weidinger
, “
Enhancing solar radiation forecasting in diverse Moroccan climate zones: A comparative study of machine learning models with Sugeno integral aggregation
,”
Atmosphere
15
,
103
(
2024
).
39.
C. J.
Smith
,
J. M.
Bright
, and
R.
Crook
, “
Cloud cover effect of clear-sky index distributions and differences between human and automatic cloud observations
,”
Sol. Energy
144
,
10
21
(
2017
).
You do not currently have access to this content.