Accurate and reliable wind power forecasting is imperative for wind power stations' stable and efficient operation. Information such as wind speed and wind direction in the same wind field has spatial-temporal differences. Considering the spatial-temporal changes in wind fields can improve model prediction accuracy. However, existing methods suffer from limited ability to capture correlation features among variables, information loss in spatial-temporal feature extraction, and neglect short-term temporal features. This paper introduces a novel ultra-short-term wind power forecasting method based on the combination of a deep separable convolutional neural network (DSCNN) and long- and short-term time-series network (LSTNet), incorporating maximum information coefficient (MIC) to realize multi-variable joint extraction of spatial-temporal features. The method utilizes MIC to jointly analyze and process the multi-variate variables before spatial-temporal feature extraction to avoid information redundancy. The spatial features between input variables and wind power are extracted by deep convolution and pointwise convolution in DSCNN. Then, a convolutional neural network and gated recurrent unit in LSTNet are combined to capture long-term and short-term temporal features. In addition, an autoregressive module is employed to accept features extracted by MIC to enhance the model's learning of temporal features. Based on real datasets, the performance of models is validated through comprehensive evaluation experiments such as comparison experiments, ablation experiments, and interval prediction methods. The results show that the proposed method reduces mean absolute error by up to 4.66% and provides more accurate prediction intervals, verifying the accuracy and effectiveness of the proposed method.

1.
Y.
Shu
,
A.
Hu
,
Y.
Zheng
,
L.
Gan
,
G.
Xiao
,
C.
Zhou
, and
L.
Song
, “
Evaluation of ship emission intensity and the inaccuracy of exhaust emission estimation model
,”
Ocean Eng.
287
,
115723
(
2023
).
2.
Z.
Jiang
and
J.
Shi
, “
Government intervention and technological innovation in the wind power industry in China: The role of industrial environmental turbulence
,”
Appl. Energy
344
,
121265
(
2023
).
3.
M.
Mazadi
,
W. D.
Rosehart
,
H.
Zareipour
,
O. P.
Malik
, and
M.
Oloomi
, “
Impact of wind integration on electricity markets: A chance–constrained Nash Cournot model
,”
Int. Trans. Electr. Energy Syst.
23
,
83
96
(
2013
).
4.
Y.
Wang
,
R.
Zou
,
F.
Liu
,
L.
Zhang
, and
Q.
Liu
, “
A review of wind speed and wind power forecasting with deep neural networks
,”
Appl. Energy
304
,
117766
(
2021
).
5.
H.
Wang
,
S.
Han
,
Y.
Liu
,
J.
Yan
, and
L.
Li
, “
Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system
,”
Appl. Energy
237
,
1
10
(
2019
).
6.
Y.
Wang
,
Y.
Li
,
R.
Zou
,
A. M.
Foley
,
D.
Al Kez
,
D.
Song
,
Q.
Hu
, and
D.
Srinivasan
, “
Sparse heteroscedastic multiple spline regression models for wind turbine power curve modeling
,”
IEEE Trans. Sustainable Energy
12
,
191
201
(
2020
).
7.
J.
Wang
,
Q.
Zhou
, and
X.
Zhang
, “
Wind power forecasting based on time series ARMA model
,”
IOP Conf. Ser.: Earth Environ. Sci.
199
,
022015
(
2018
).
8.
H. H.
Aly
, “
A hybrid optimized model of adaptive neuro-fuzzy inference system, recurrent Kalman filter and neuro-wavelet for wind power forecasting driven by DFIG
,”
Energy
239
,
122367
(
2022
).
9.
L.
Liu
,
J.
Liu
,
Y.
Ye
,
H.
Liu
,
K.
Chen
,
D.
Li
,
X.
Dong
, and
M.
Sun
, “
Ultra-short-term wind power forecasting based on deep Bayesian model with uncertainty
,”
Renewable Energy
205
,
598
607
(
2023
).
10.
X.
Wang
,
Y.
Liu
,
J.
Hou
,
S.
Wang
, and
H.
Yao
, “
Medium-and long-term wind-power forecasts, considering regional similarities
,”
Atmosphere
14
,
430
(
2023
).
11.
Y.-Y.
Hong
and
C. L. P. P.
Rioflorido
, “
A hybrid deep learning-based neural network for 24-h ahead wind power forecasting
,”
Appl. Energy
250
,
530
539
(
2019
).
12.
S.
Garg
and
R.
Krishnamurthi
, “
A CNN encoder decoder LSTM model for sustainable wind power predictive analytics
,”
Sustainable Comput.: Inf. Syst.
38
,
100869
(
2023
).
13.
S.
Qureshi
,
F.
Shaikh
,
L.
Kumar
,
F.
Ali
,
M.
Awais
, and
A. E.
Gürel
, “
Short-term forecasting of wind power generation using artificial intelligence
,”
Environ. Challenges
11
,
100722
(
2023
).
14.
M.
Abou Houran
,
S. M. S.
Bukhari
,
M. H.
Zafar
,
M.
Mansoor
, and
W.
Chen
, “
COA-CNN-LSTM: Coati optimization algorithm-based hybrid deep learning model for PV/wind power forecasting in smart grid applications
,”
Appl. Energy
349
,
121638
(
2023
).
15.
Q.
Zhu
,
J.
Chen
,
L.
Zhu
,
X.
Duan
, and
Y.
Liu
, “
Wind speed prediction with spatio-temporal correlation: A deep learning approach
,”
Energies
11
,
705
(
2018
).
16.
Y.
Chen
,
S.
Zhang
,
W.
Zhang
,
J.
Peng
, and
Y.
Cai
, “
Multifactor spatio-temporal correlation model based on a combination of convolutional neural network and long short-term memory neural network for wind speed forecasting
,”
Energy Convers. Manage.
185
,
783
799
(
2019
).
17.
Q.
Wu
,
F.
Guan
,
C.
Lv
, and
Y.
Huang
, “
Ultra-short-term multi-step wind power forecasting based on CNN-LSTM
,”
IET Renewable Power Gen.
15
,
1019
1029
(
2021
).
18.
P.
Lu
,
L.
Ye
,
W.
Zhong
,
Y.
Qu
,
B.
Zhai
,
Y.
Tang
, and
Y.
Zhao
, “
A novel spatio-temporal wind power forecasting framework based on multi-output support vector machine and optimization strategy
,”
J. Cleaner Prod.
254
,
119993
(
2020
).
19.
J.
Li
and
M.
Armandpour
, “
Deep spatio-temporal wind power forecasting
,” in
ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
IEEE
,
2022
),
pp. 4138
4142
.
20.
Z.
Zhao
,
S.
Yun
,
L.
Jia
,
J.
Guo
,
Y.
Meng
,
N.
He
,
X.
Li
,
J.
Shi
, and
L.
Yang
, “
Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features
,”
Eng. Appl. Artif. Intell.
121
,
105982
(
2023
).
21.
J.
Wei
,
X.
Wu
,
T.
Yang
, and
R.
Jiao
, “
Ultra-short-term forecasting of wind power based on multi-task learning and LSTM
,”
Int. J. Electr. Power Energy Syst.
149
,
109073
(
2023
).
22.
S.
Sun
,
Y.
Liu
,
Q.
Li
,
T.
Wang
, and
F.
Chu
, “
Short-term multi-step wind power forecasting based on spatio-temporal correlations and transformer neural networks
,”
Energy Convers. Manage.
283
,
116916
(
2023
).
23.
Y.
Song
,
D.
Tang
,
J.
Yu
,
Z.
Yu
, and
X.
Li
, “
Short-term forecasting based on graph convolution networks and multiresolution convolution neural networks for wind power
,”
IEEE Trans. Ind. Inf.
19
,
1691
1702
(
2022
).
24.
D. N.
Reshef
,
Y. A.
Reshef
,
H. K.
Finucane
,
S. R.
Grossman
,
G.
McVean
,
P. J.
Turnbaugh
,
E. S.
Lander
,
M.
Mitzenmacher
, and
P. C.
Sabeti
, “
Detecting novel associations in large data sets
,”
Science
334
,
1518
1524
(
2011
).
25.
I.
Khalfaoui-Hassani
,
T.
Pellegrini
, and
T.
Masquelier
, “
Dilated convolution with learnable spacings
,” arXiv:2112.03740 (
2021
).
26.
F.
Chollet
, “
Xception: Deep learning with depthwise separable convolutions
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2017
), pp.
1251
1258
.
27.
M.
Yin
,
S.
He
,
T. A.
Soomro
, and
H.
Yuan
, “
Efficient skeleton-based action recognition via multi-stream depthwise separable convolutional neural network
,”
Expert Syst. Appl.
226
,
120080
(
2023
).
28.
G.
Lai
,
W.-C.
Chang
,
Y.
Yang
, and
H.
Liu
, “
Modeling long-and short-term temporal patterns with deep neural networks
,” in t
he 41st International ACM SIGIR Conference on Research & Development in Information Retrieval
(
Association for Computing Machinery
,
2018
), pp.
95
104
.
29.
S.
Farah
,
N.
Humaira
,
Z.
Aneela
,
E.
Steffen
et al, “
Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning
,”
Renewable Sustainable Energy Rev.
167
,
112700
(
2022
).
30.
T.
Hu
,
W.
Wu
,
Q.
Guo
,
H.
Sun
,
L.
Shi
, and
X.
Shen
, “
Very short-term spatial and temporal wind power forecasting: A deep learning approach
,”
CSEE J. Power Energy Syst.
6
,
434
443
(
2019
).
31.
D.
Niu
,
L.
Sun
,
M.
Yu
, and
K.
Wang
, “
Point and interval forecasting of ultra-short-term wind power based on a data-driven method and hybrid deep learning model
,”
Energy
254
,
124384
(
2022
).
32.
B.
Khorramdel
,
C.
Chung
,
N.
Safari
, and
G.
Price
, “
A fuzzy adaptive probabilistic wind power prediction framework using diffusion kernel density estimators
,”
IEEE Trans. Power Syst.
33
,
7109
7121
(
2018
).
33.
J.
González-Sopeña
,
V.
Pakrashi
, and
B.
Ghosh
, “
An overview of performance evaluation metrics for short-term statistical wind power forecasting
,”
Renewable Sustainable Energy Rev.
138
,
110515
(
2021
).
34.
M.
Z. Naser
and
A. T. G.
Tapeh
, “
Causality, causal discovery, causal inference and counterfactuals in civil engineering: Causal machine learning and case studies for knowledge discovery
,”
Comput. Concr.
31
(
4
),
277
292
(
2023
).
35.
D.
Kalainathan
and
O.
Goudet
, “
Causal discovery toolbox: Uncover causal relationships in python
,” arXiv:1903.02278 (
2019
).
You do not currently have access to this content.