In computational fluid dynamics, defining precise boundary conditions, especially at inlets, is of great importance. Inlet flows typically exhibit natural turbulence, which is managed in various ways in scale-resolving simulations. Methods to establish turbulent inlet conditions are commonly created using natural transition, uncorrelated oscillations, periodic boundary conditions from auxiliary simulations, or synthetic turbulent fields. In this study, we explore a technique aimed at generating a divergence-free synthetic inflow turbulence with arbitrary anisotropy. The methodology is based on the conventional portrayal of turbulence as consisting of several coherent structures. While our approach adeptly emulates predefined statistical characteristics across different scales, its primary focus is on generating input parameters that impact the airflow within the wake of individual wind turbines and the atmospheric boundary layer within a wind farm. The results are compared with high-resolution velocity experimental measurements, large eddy simulations, and the digital filter-based inlet boundary condition already available in OpenFOAM. The findings demonstrate that the applied inflow generator outperforms the default OpenFOAM filter, particularly in the context of a single wind turbine.

1.
N.
Ali
,
N.
Hamilton
,
M.
Calaf
, and
R. B.
Cal
, “
Turbulence kinetic energy budget and conditional sampling of momentum, scalar, and intermittency fluxes in thermally stratified wind farms
,”
J. Turbul.
20
,
32
(
2019
).
2.
J.
Meyers
,
C.
Bottasso
,
K.
Dykes
,
P.
Fleming
,
P.
Gebraad
,
G.
Giebel
,
T.
Göçmen
, and
J.-W.
van Wingerden
, “
Wind farm flow control: Prospects and challenges
,”
Wind Energy Sci.
7
,
2271
(
2022
).
3.
N.
Ali
,
G.
Cortina
,
N.
Hamilton
,
M.
Calaf
, and
R. B.
Cal
, “
Turbulence characteristics of a thermally stratified wind turbine array boundary layer via proper orthogonal decomposition
,”
J. Fluid Mech.
828
,
175
(
2017
).
4.
P. R.
Spalart
, “
Detached-eddy simulation
,”
Annu. Rev. Fluid Mech.
41
,
181
(
2009
).
5.
X.
Wu
, “
Inflow turbulence generation methods
,”
Annu. Rev. Fluid Mech.
49
,
23
(
2017
).
6.
H.
Plischka
,
S.
Michel
,
J.
Turnow
,
B.
Leitl
, and
N.
Kornev
, “
Comparison of turbulent inflow conditions for neutral stratified atmospheric boundary layer flow
,”
J. Wind Eng. Ind. Aerodyn.
230
,
105145
(
2022
).
7.
M.
Klein
,
A.
Sadiki
, and
J.
Janicka
, “
A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations
,”
J. Comput. Phys.
186
,
652
(
2003
).
8.
A.
Keating
,
U.
Piomelli
,
E.
Balaras
, and
H.-J.
Kaltenbach
, “
A priori and a posteriori tests of inflow conditions for large-eddy simulation
,”
Phys. Fluids
16
,
4696
(
2004
).
9.
J. U.
Schlüter
,
H.
Pitsch
, and
P.
Moin
, “
Large-eddy simulation inflow conditions for coupling with Reynolds-averaged flow solvers
,”
AIAA J.
42
,
478
(
2004
).
10.
M.
Pamiès
,
P.-E.
Weiss
,
E.
Garnier
,
S.
Deck
, and
P.
Sagaut
, “
Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows
,”
Phys. Fluids
21
,
045103
(
2009
).
11.
G. R.
Tabor
and
M. H.
Baba-Ahmadi
, “
Inlet conditions for large eddy simulation: A review
,”
Comput. Fluids
39
,
553
(
2010
).
12.
S.
Schmidt
and
M.
Breuer
, “
Hybrid LES–URANS methodology for the prediction of non-equilibrium wall-bounded internal and external flows
,”
Comput. Fluids
96
,
226
(
2014
).
13.
M. M.
Rai
and
P.
Moin
, “
Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer
,”
J. Comput. Phys.
109
,
169
(
1993
).
14.
T. S.
Lund
,
X.
Wu
, and
K. D.
Squires
, “
Generation of turbulent inflow data for spatially-developing boundary layer simulations
,”
J. Comput. Phys.
140
,
233
(
1998
).
15.
N.
Kornev
and
E.
Hassel
, “
A new method for generation of artificial turbulent inflow data with prescribed statistic properties for LES and DNS simulations
,”
Schiffbauforschung
42
,
35
(
2003
).
16.
E.
Sergent
, “
Vers une methodologie de couplage entre la simulation des grandes echelles et les modeles statistiques
,” Ph.D. thesis (
Ecole Centrale de Lyon
,
Ecully
,
2002
).
17.
P.
Batten
,
U.
Goldberg
, and
S.
Chakravarthy
, “
Interfacing statistical turbulence closures with large-eddy simulation
,”
AIAA J.
42
,
485
(
2004
).
18.
N.
Jarrin
,
S.
Benhamadouche
,
D.
Laurence
, and
R.
Prosser
, “
A synthetic-eddy-method for generating inflow conditions for large-eddy simulations
,”
Int. J. Heat Fluid Flow
27
,
585
(
2006
).
19.
B.
Roidl
,
M.
Meinke
, and
W.
Schröder
, “
A reformulated synthetic turbulence generation method for a zonal RANS–LES method and its application to zero-pressure gradient boundary layers
,”
Int. J. Heat Fluid Flow
44
,
28
(
2013
).
20.
H.
Kröger
and
N.
Kornev
, “
Generation of divergence free synthetic inflow turbulence with arbitrary anisotropy
,”
Comput. Fluids
165
,
78
(
2018
).
21.
M.
Hao
,
J.
Hope-Collins
, and
L.
di Mare
, “
Generation of turbulent inflow data from realistic approximations of the covariance tensor
,”
Phys. Fluids
34
,
115140
(
2022
).
22.
T.
Sato
and
H.
Kusaka
, “
Applicability of methods for inflow turbulence generation developed in a CFD field to the thermally driven convective boundary layer simulations
,”
J. Appl. Meteorol. Climatol.
62
,
1783
(
2023
).
23.
A. F.
Melaku
and
G. T.
Bitsuamlak
, “
A divergence-free inflow turbulence generator using spectral representation method for large-eddy simulation of ABL flows
,”
J. Wind Eng. Ind. Aerodyn.
212
,
104580
(
2021
).
24.
S. L.
Campbell
and
C. D.
Meyer
,
Generalized Inverses of Linear Transformations
(
SIAM
,
2009
).
25.
N.
Stergiannis
,
C.
Lacor
,
J. V.
Beeck
, and
R.
Donnelly
, “
CFD modelling approaches against single wind turbine wake measurements using rans
,”
J. Phys.
753
,
032062
(
2016
).
26.
H.
Sarlak
,
F.
Pierella
,
R.
Mikkelsen
, and
J. N.
Sørensen
, “
Comparison of two LES codes for wind turbine wake studies
,”
J. Phys.
524
,
012145
(
2014
).
27.
E.
LarKermani
,
E.
Roohi
, and
F.
Porté-Agel
, “
Evaluating the modulated gradient model in large eddy simulation of channel flow with OpenFOAM
,”
J. Turbul.
19
,
600
(
2018
).
28.
F.
Nicoud
and
F.
Ducros
, “
Subgrid-scale stress modelling based on the square of the velocity gradient tensor
,”
Flow, Turbul. Combust.
62
,
183
(
1999
).
29.
D. B.
Spalding
, “
A single formula for the law of the wall
,”
J. Appl. Mech.
28
,
455
(
1961
).
30.
L. P.
Chamorro
and
F.
Porté-Agel
, “
Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: A wind-tunnel study
,”
Boundary-Layer Meteorol.
136
,
515
(
2010
).
31.
R. J. A. M.
Stevens
and
C.
Meneveau
, “
Flow structure and turbulence in wind farms
,”
Annu. Rev. Fluid Mech.
49
,
311
(
2017
).
32.
Y.-T.
Wu
and
F.
Porté-Agel
, “
Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parametrisations
,”
Boundary-Layer Meteorol.
138
,
345
(
2011
).
33.
X.
Yang
and
F.
Sotiropoulos
, “
On the predictive capabilities of LES-actuator disk model in simulating turbulence past wind turbines and farms
,” in
American Control Conference
(
IEEE
,
2013
), pp.
2878
2883
.
34.
L. A.
Martinez
,
C.
Meneveau
, and
R. J. A. M.
Stevens
, “
Wind farm large-eddy simulations on very coarse grid resolutions using an actuator line model
,” AIAA Paper No. AIAA 2016-1261,
2016
.
35.
N.
Ali
,
N.
Hamilton
,
G.
Cortina
,
M.
Calaf
, and
R. B.
Cal
, “
Anisotropy stress invariants of thermally stratified wind turbine array boundary layers using large eddy simulations
,”
J. Renewable Sustainable Energy
10
,
013301
(
2018
).
36.
J.
Rotta
, “
Statistical theory of nonhomogeneous turbulence
,”
Z. Phys.
131
,
51
(
1951
).
37.
K.-S.
Choi
and
J. L.
Lumley
, “
The return to isotropy of homogeneous turbulence
,”
J. Fluid Mech.
436
,
59
(
2001
).
38.
J. L.
Lumley
and
G. R.
Newman
, “
The return to isotropy of homogeneous turbulence
,”
J. Fluid Mech.
82
,
161
(
1977
).
39.
S.
Banerjee
,
R.
Krahl
,
F.
Durst
, and
Ch.
Zenger
, “
Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches
,”
J. Turbul.
8
,
N32
(
2007
).
40.
A.
Spencer
, “
Part III. Theory of invariants
,”
Continuum Phys.
1
,
239
(
1971
).
41.
M.
Emory
and
G.
Iaccarino
, “
Visualizing turbulence anisotropy in the spatial domain with componentality contours
,” in
Center for Turbulence Research Annual Research Briefs
,
2014
.
42.
I.
Marusic
,
J. P.
Monty
,
M.
Hultmark
, and
A. J.
Smits
, “
On the logarithmic region in wall turbulence
,”
J. Fluid Mech.
716
,
R3
(
2013
).
43.
R. B.
Smith
, “
The wind farm pressure field
,”
Wind Energy Sci.
9
,
253
(
2024
).
44.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
45.
C.
Neuhauser
,
M.
Hieronymus
,
M.
Kern
,
M.
Rautenhaus
,
A.
Oertel
, and
R.
Westermann
, “
Visual analysis of model parameter sensitivities along warm conveyor belt trajectories using Met. 3D (1.6.0-multivar1)
,”
Geosci. Model Dev.
16
,
4617
(
2023
).
46.
A. E.
Perry
and
B. D.
Fairlie
, “
Critical points in flow patterns
,” in
Advances in Geophysics
(
Elsevier
,
1975
), Vol.
18
, pp.
299
315
.
47.
M.
Tutkun
,
A.
Helgeland
,
R. B.
Cal
,
O.
Andreassen
, and
J.-P.
Laval
, “
Classification of critical points of turbulent velocity field in a converging-diverging channel flow
,” AIAA Paper No. AIAA 2011-4023,
2011
.
48.
M.
Mihai
and
R.
Westermann
, “
Visualizing the stability of critical points in uncertain scalar fields
,”
Comput. Graphics
41
,
13
(
2014
).
49.
L. S.
Tuckerman
,
M.
Chantry
, and
D.
Barkley
, “
Patterns in wall-bounded shear flows
,”
Annu. Rev. Fluid Mech.
52
,
343
(
2020
).
50.
Y.-T.
Wu
and
F.
Porté-Agel
, “
Simulation of turbulent flow inside and above wind farms: Model validation and layout effects
,”
Boundary-Layer Meteorol.
146
,
181
(
2013
).
51.
N.
Ali
,
N.
Hamilton
,
M.
Calaf
, and
R. B.
Cal
, “
Classification of the Reynolds stress anisotropy tensor in very large thermally stratified wind farms using colormap image segmentation
,”
J. Renewable Sustainable Energy
11
,
063305
(
2019
).
52.
A.
Eidi
,
R.
Ghiassi
,
X.
Yang
, and
M.
Abkar
, “
Model-form uncertainty quantification in RANS simulations of wakes and power losses in wind farms
,”
Renewable Energy
179
,
2212
(
2021
).
53.
S. D.
Hornshøj-Møller
,
P. D.
Nielsen
,
P.
Forooghi
, and
M.
Abkar
, “
Quantifying structural uncertainties in Reynolds-averaged Navier–Stokes simulations of wind turbine wakes
,”
Renewable Energy
164
,
1550
(
2021
).
54.
Y.-T.
Wu
,
T.-L.
Liao
,
C.-K.
Chen
,
C.-Y.
Lin
, and
P.-W.
Chen
, “
Power output efficiency in large wind farms with different hub heights and configurations
,”
Renewable Energy
132
,
941
(
2019
).
55.
R. J. A. M.
Stevens
,
D. F.
Gayme
, and
C.
Meneveau
, “
Large eddy simulation studies of the effects of alignment and wind farm length
,”
J. Renewable Sustainable Energy
6
,
023105
(
2014
).
56.
N.
Hamilton
,
B.
Viggiano
,
M.
Calaf
,
M.
Tutkun
, and
R. B.
Cal
, “
A generalized framework for reduced-order modeling of a wind turbine wake
,”
Wind Energy
21
,
373
(
2018
).
You do not currently have access to this content.