Synthetic jets (SJs) offer a promising technique for enhancing aerodynamic efficiency in vertical-axis wind turbines (VAWTs) by controlling boundary layer separation on airfoils. This study uses computational fluid dynamics simulations to investigate the impact of SJs on a VAWT. The results show that SJs effectively delay stall onset, increasing lift coefficient at high angles of attack, leading to an estimated 17% improvement in output power when applied to full VAWT simulations using the actuator line model at Tip Speed Ratio equal to 3. Additionally, the study suggests SJs may positively affect wake behavior by reducing turbulence and modifying wake velocity profiles, which could further influence power generation in wind farms. This research underscores the importance of model selection in accurately predicting the aerodynamic benefits of SJs, providing a foundational understanding for future exploration in VAWT applications.

1.
W.
Tjiu
,
T.
Marnoto
,
S.
Mat
,
M. H.
Ruslan
, and
K.
Sopian
, “
Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development
,”
Renewable Energy
75
,
560
571
(
2015
).
2.
R.
Gupta
,
A.
Biswas
, and
K.
Sharma
, “
Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius–three-bladed Darrieus rotor
,”
Renewable Energy
33
,
1974
1981
(
2008
).
3.
B. D.
Altan
and
M.
Atilgan
, “
The use of a curtain design to increase the performance level of a Savonius wind rotors
,”
Renewable Energy
35
,
821
829
(
2010
).
4.
S.
Peace
, “
Another approach to wind
,”
Mech. Eng.
126
,
28
31
(
2004
).
5.
M.
Douak
,
Z.
Aouachria
,
R.
Rabehi
, and
N.
Allam
, “
Wind energy systems: Analysis of the self-starting physics of vertical axis wind turbine
,”
Renewable Sustainable Energy Rev.
81
,
1602
1610
(
2018
).
6.
S.
Sharma
and
R. K.
Sharma
, “
CFD investigation to quantify the effect of layered multiple miniature blades on the performance of Savonius rotor
,”
Energy Convers. Manage.
144
,
275
285
(
2017
).
7.
A.
Bianchini
,
G.
Ferrara
, and
L.
Ferrari
, “
Design guidelines for H-Darrieus wind turbines: Optimization of the annual energy yield
,”
Energy Convers. Manage.
89
,
690
707
(
2015
).
8.
B.
Hand
,
G.
Kelly
, and
A.
Cashman
, “
Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review
,”
Renewable Sustainable Energy Rev.
139
,
110699
(
2021
).
9.
N.
Fujisawa
and
S.
Shibuya
, “
Observations of dynamic stall on Darrieus wind turbine blades
,”
J. Wind Eng. Ind. Aerodyn.
89
,
201
214
(
2001
).
10.
C. J.
Simño Ferreira
,
A.
van Zuijlen
,
H.
Bijl
,
G.
van Bussel
, and
G.
van Kuik
, “
Simulating dynamic stall in a two-dimensional vertical-axis wind turbine: Verification and validation with particle image velocimetry data
,”
Wind Energy
13
,
1
17
(
2010
).
11.
A.
Choudhry
,
R.
Leknys
,
M.
Arjomandi
, and
R.
Kelso
, “
An insight into the dynamic stall lift characteristics
,”
Exp. Therm. Fluid Sci.
58
,
188
208
(
2014
).
12.
A.
Rezaeiha
,
H.
Montazeri
, and
B.
Blocken
, “
Active flow control for power enhancement of vertical axis wind turbines: Leading-edge slot suction
,”
Energy
189
,
116131
(
2019
).
13.
R. S.
Amano
, “
Review of wind turbine research in 21st century
,”
J. Energy Resour. Technol.
139
,
050801
(
2017
).
14.
A.-J.
Buchner
,
M.
Lohry
,
L.
Martinelli
,
J.
Soria
, and
A.
Smits
, “
Dynamic stall in vertical axis wind turbines: Comparing experiments and computations
,”
J. Wind Eng. Ind. Aerodyn.
146
,
163
171
(
2015
).
15.
B.
Hand
,
G.
Kelly
, and
A.
Cashman
, “
Numerical simulation of a vertical axis wind turbine airfoil experiencing dynamic stall at high Reynolds numbers
,”
Comput. Fluids
149
,
12
30
(
2017
).
16.
G. B.
Schubauer
and
W. G.
Spangenberg
, “
Forced mixing in boundary layers
,”
J. Fluid Mech.
8
,
10
32
(
1960
).
17.
D. D.
Tavernier
,
C.
Ferreira
,
A.
Viré
,
B.
LeBlanc
, and
S.
Bernardy
, “
Controlling dynamic stall using vortex generators on a wind turbine airfoil
,”
Renewable Energy
172
,
1194
1211
(
2021
).
18.
D.
Baldacchino
,
M.
Manolesos
,
C.
Ferreira
,
G.
Salcedo
,
M.
Aparicio
,
T.
Chaviaropoulos
,
K.
Diakakis
,
L.
Florentie
,
N. R.
García
,
G.
Papadakis
,
N. N.
Sørensen
,
N.
Timmer
,
N.
Troldborg
,
S.
Voutsinas
, and
A. V.
Zuijlen
, “
Experimental benchmark and code validation for airfoils equipped with passive vortex generators
,”
J. Phys.: Conf. Ser.
753
,
022002
(
2016
).
19.
D.
Baldacchino
,
C.
Ferreira
,
D. D.
Tavernier
,
W. A.
Timmer
, and
G. J.
van Bussel
, “
Experimental parameter study for passive vortex generators on a 30% thick airfoil
,”
Wind Energy
21
,
745
765
(
2018
).
20.
M. E.
DeSalvo
and
A.
Glezer
, “
Airfoil aerodynamic performance modification using hybrid surface actuators
,” AIAA Paper No. 2005-872,
2005
.
21.
H.
Zhu
,
W.
Hao
,
C.
Li
, and
Q.
Ding
, “
Simulation on flow control strategy of synthetic jet in an vertical axis wind turbine
,”
Aerosp. Sci. Technol.
77
,
439
448
(
2018
).
22.
J.
Yen
and
N. A.
Ahmed
, “
Enhancing vertical axis wind turbine by dynamic stall control using synthetic jets
,”
J. Wind Eng. Ind. Aerodyn.
114
,
12
17
(
2013
).
23.
P.
Wang
,
Q.
Liu
,
C.
Li
,
W.
Miao
,
S.
Luo
,
K.
Sun
, and
K.
Niu
, “
Effect of trailing edge dual synthesis jets actuator on aerodynamic characteristics of a straight-bladed vertical axis wind turbine
,”
Energy
238
,
121792
(
2022
).
24.
N.
Morgulis
and
A.
Seifert
, “
Fluidic flow control applied for improved performance of Darrieus wind turbines
,”
Wind Energy
19
,
1585
1602
(
2016
).
25.
E.
Anik
,
A.
Abdulrahim
,
Y.
Ostovan
,
B.
Mercan
, and
O.
Uzol
, “
Active control of the tip vortex: An experimental investigation on the performance characteristics of a model turbine
,”
J. Phys.: Conf. Ser.
524
,
012098
(
2014
).
26.
A.
Posa
and
E.
Balaras
, “
Large eddy simulation of an isolated vertical axis wind turbine
,”
J. Wind Eng. Ind. Aerodyn.
172
,
139
151
(
2018
).
27.
C.
Simño Ferreira
,
G.
van Kuik
,
G.
van Bussel
, and
F.
Scarano
, “
Visualization by PIV of dynamic stall on a vertical axis wind turbine
,”
Exp. Fluids
46
,
97
108
(
2009
).
28.
M.
Moshfeghi
and
N.
Hur
, “
Numerical study on the effects of a synthetic jet actuator on S809 airfoil aerodynamics at different flow regimes and jet flow angles
,”
J. Mech. Sci. Technol.
31
,
1233
1240
(
2017
).
29.
M.
Jain
,
B.
Puranik
, and
A.
Agrawal
, “
A numerical investigation of effects of cavity and orifice parameters on the characteristics of a synthetic jet flow
,”
Sens. Actuators A
165
(
2
),
351
366
(
2011
).
30.
M. A.
Boukenkoul
,
F.-C.
Li
, and
M.
Aounallah
, “
A 2D simulation of the flow separation control over a NACA0015 airfoil using a synthetic jet actuator
,”
IOP Conf. Ser.: Mater. Sci. Eng.
187
,
012007
(
2017
).
31.
R.
Duvigneau
and
M.
Visonneau
, “
Optimization of a synthetic jet actuator for aerodynamic stall control
,”
Comput. Fluids
35
,
624
638
(
2006
).
32.
F. R.
Menter
and
T.
Esch
, “
Elements of industrial heat transfer prediction
,” in
16th Brazilian Congress of Mechanical Engineering (COBEM)
(
2001
).
33.
F. R.
Menter
,
M.
Kuntz
, and
R.
Langtry
, “
Ten years of industrial experience with the SST turbulence model
,” in
Turbulence, Heat and Mass Transfer
, edited by
K.
Hanjalic
,
Y.
Nagano
, and
M.
Tummers
(
Begell House, Inc
.,
2003
), Vol.
4
, pp.
625
632
.
34.
N. L. R.
Center
, see http://turbmodels.larc.nasa.gov/sst.html for “
The k-ω SST turbulence model: Corrections and clarifications
,” accessed May 9, 2024.
35.
A.
Hellsten
, “
Some improvements in Menter's k-omega-SST turbulence model
,” AIAA Paper No. 98-2554,
1998
.
36.
K.
Mohseni
and
M.
Rajat
, “
Basic principles
,” in
Synthetic Jets Fundamentals and Applications
(CRC Press,
2014
).
37.
M.
Jafari
,
M. S.
Sakib
,
D. T.
Griffith
,
I.
Brownstein
,
B.
Strom
, and
J.
Cooney
, “
Wind tunnel experiment to study aerodynamics and control of H-rotor vertical axis wind turbine
,”
J. Phys.: Conf. Ser.
2265
,
022084
(
2022
).
38.
Tulyp-Project
,
A Dutch IMBY Approach to Renewable Energy
(
Topsector Energie
,
2017
).
39.
P.
Bachant
,
A.
Goude
, and
M.
Wosnik
(
2019
). “
turbinesFoam/turbinesFoam: V 0.1.1
,” GitHub. https://github.com/turbinesFoam/turbinesFoam
40.
D. D.
Tavernier
and
C.
Ferreira
, “
The need for dynamic inflow models for vertical axis wind turbines
,”
J. Phys.: Conf. Ser.
1356
,
012036
(
2019
).
41.
D. D.
Tavernier
,
C.
Ferreira
,
U.
Paulsen
, and
H.
Madsen
, “
The 3D effects of a vertical-axis wind turbine: Rotor and wake induction
,”
J. Phys.: Conf. Ser.
1618
,
052040
(
2020
).
42.
D. D.
Tavernier
,
M.
Sakib
,
T.
Griffith
,
G.
Pirrung
,
U.
Paulsen
,
H.
Madsen
,
W.
Keijer
, and
C.
Ferreira
, “
Comparison of 3D aerodynamic models for vertical-axis wind turbines: H-rotor and Φ-rotor
,”
J. Phys.: Conf. Ser.
1618
,
052041
(
2020
).
43.
J. N.
Sorensen
and
W. Z.
Shen
, “
Numerical modeling of wind turbine wakes
,”
J. Fluids Eng.
124
,
393
399
(
2002
).
44.
P. Å.
Krogstad
and
P. E.
Eriksen
, ““
Blind test” calculations of the performance and wake development for a model wind turbine
,”
Renewable Energy
50
,
325
333
(
2013
).
45.
R.
Zhao
,
A.
Creech
,
A.
Borthwick
,
V.
Venugopal
, and
T.
Nishino
, “
Aerodynamic analysis of a two-bladed vertical-axis wind turbine using a coupled unsteady RANS and actuator line model
,”
Energies
13
(
4
),
776
(
2020
).
46.
S. H.
Hezaveh
,
E.
Bou–Zeid
,
J.
Dabiri
,
M.
Kinzel
,
G.
Cortina
, and
L.
Martinelli
, “
Increasing the power production of vertical-axis wind-turbine farms using synergistic clustering
,”
Boundary-Layer Meteorol.
169
,
275
296
(
2018
).
47.
F.
Papi
,
P. F.
Melani
,
S.
Xie
,
C.
Perrone
,
P.
Scienza
,
F.
Balduzzi
, and
A.
Bianchini
, “
Development and validation of an advanced actuator line model for wind turbines
,”
E3S Web Conf.
312
,
08004
(
2021
).
48.
V.
Mendoza
and
A.
Goude
, “
Validation of actuator line and vortex models using normal forces measurements of a straight-bladed vertical axis wind turbine
,”
Energies
13
(
3
),
511
(
2020
).
49.
S. H.
Hezaveh
,
E.
Bou–Zeid
,
M. W.
Lohry
, and
L.
Martinelli
, “
Simulation and wake analysis of a single vertical axis wind turbine
,”
Wind Energy
20
,
713
730
(
2017
).
50.
W.
Sheng
,
R. A. M.
Galbraith
, and
F. N.
Coton
, “
A modified dynamic stall model for low Mach numbers
,”
J. Sol. Energy Eng.
130
,
031013
(
2008
).
51.
J. G.
Leishman
and
T. S.
Beddoes
, “
A semiempirical model for dynamic stall
,”
J. Am. Helicopter Soc.
34
,
3
17
(
1989
).
52.
A.
Matiz-Chicacausa
,
S.
Molano
, and
O. D.
Lopez
, “
Flow control with synthetic jets on a wind turbine airfoil
,” AIAA Paper No. 2023-3526,
2023
.
You do not currently have access to this content.