To assist vessels in meeting the net-zero emission target set by the International Maritime Organization for 2050, this article investigates the emission and combustion characteristics of biodiesel–ammonia dual-fuel engines. This research investigates the impact of various ammonia mass ratios (AMRs, m%) at 0, 14.67%, 29.48%, 46.21%, 58.73%, and 82.72% on the combustion and emission performance of biodiesel–ammonia dual-fuel engines at fixed speed and load. The results show that the biodiesel–ammonia dual-fuel engine is capable of operating at a substantial AMR of 82.72%. In addition, as the AMR increased, the in-cylinder pressure and brake thermal efficiency decreased. The heat release rate peaked at 57.13% AMR. When compared to the only-biodiesel mode, NOx, CO2, and soot emissions are significantly reduced. CO2 and soot emissions decreased by 63.43% and 60%, respectively, at 82.72% AMR, while NOx emissions fell by 34.15% at 58.73% AMR. The emissions of N2O and unburned ammonia rose linearly as AMR increased. The increase in N2O did not counteract the substantial fall in CO2e. CO2e fell by 63.12% at 82.72% AMR, following a trend to similar CO2.

1.
International Maritime Organization
,
The 80th session of its Marine Environment Protection Committee (MEPC 80)
,
International Maritime Organization
, 3–7 July
2023
.
2.
R.
Zhao
,
L. P.
Xu
,
S. Q.
Feng
et al, “
Effects of hydrogen addition in fuel of marine LNG fueled engines on combustion and emission
,”
J. Propul. Technol.
41
(
11
),
2549
2557
(
2020
).
3.
X.
Zhou
,
T.
Li
,
R.
Chen
,
Y.
Wei
,
X.
Wang
,
N.
Wang
,
S.
Li
,
M.
Kuang
, and
W.
Yang
, “
Ammonia marine engine design for enhanced efficiency and reduced greenhouse gas emissions
,”
Nat. Commun.
15
,
2110
(
2024
).
4.
B.
Zincir
and
C.
Deniz
, “
An investigation of hydrogen blend fuels applicability on ships
,” in
Second International Symposium on Naval Architecture and Maritime,
Istanbul, Turkey
,
23–24 October
2014 (
Yıldız Technical University
,
2014
), pp.
23
24
.
5.
C.
Yao
,
C. S.
Cheung
,
C.
Cheng
,
Y.
Wang
,
T. L.
Chan
, and
S. C.
Lee
, “
Effect of diesel/methanol compound combustion on diesel engine combustion and emissions
,”
Energy Convers. Manag.
49
(
6
),
1696
1704
(
2008
).
6.
L.
Bromberg
,
Benchmarking of alcohol chemical kinetic mechanism for laminar flame speed calculations
,
2008
.
7.
A.
Demirbas
,
Methane Gas Hydrate: As a Natural Gas Source
(
Springer
,
London
,
2010
).
8.
J. B.
Heywood
,
Internal Combustion Engine Fundamentals
(
McGraw-Hill
,
New York
,
1998
).
9.
C.
Deniz
and
B.
Zincir
, “
Environmental and economical assessment of alternative marine fuels
,”
J. Cleaner Prod.
113
,
438
449
(
2016
).
10.
J.
Liu
,
C. J.
Ulishney
, and
C. E.
Dumitrescu
, “
Numerical investigation of a heavy-duty compression ignition engine converted to ammonia spark-ignition operation
,”
J. Eng. Gas Turbines Power
145
(
8
),
081008
(
2023
).
11.
C.
Danan
,
L.
Jun
,
H.
Hongyu
,
C.
Ying
,
H.
Zhaohong
, and
D.
Lisheng
, “
Progress in ammonia combustion and reaction mechanism
,”
Chem. Bull.
83
(
6
),
508
515
(
2020
).
12.
S.
Zhou
,
W.
Yang
,
H.
Tan
,
Y.
Wang
,
J.
Wang
,
X.
Wang
, and
F.
Yang
, “
Research progress of ammonia combustion
,”
Proc. CSEE
41
(
12
),
4164
4182
(
2021
).
13.
H.
Kobayashi
,
A.
Hayakawa
,
K. K. A.
Somarathne
, and
E. C.
Okafor
, “
Science and technology of ammonia combustion
,”
Proc. Combust. Inst.
37
(
1
),
109
133
(
2019
).
14.
R.
Pelé
,
P.
Brequigny
,
J.
Bellettre
, and
C.
Mounaïm-Rousselle
, “
Performances and pollutant emissions of spark ignition engine using direct injection for blends of ethanol/ammonia and pure ammonia
,”
Int. J. Engine Res.
25
(
2
),
320
333
(
2024
).
15.
Z.
Liu
,
L.
Zhou
, and
H.
Wei
, “
Experimental investigation on the performance of pure ammonia engine based on reactivity controlled turbulent jet ignition
,”
Fuel
335
,
127116
(
2023
).
16.
Q.
Huang
and
J.
Liu
, “
Preliminary assessment of the potential for rapid combustion of pure ammonia in engine cylinders using the multiple spark ignition strategy
,”
Int. J. Hydrogen Energy
55
,
375
385
(
2024
).
17.
R.
Yang
,
Z.
Liu
, and
J.
Liu
, “
The methodology of decoupling fuel and thermal nitrogen oxides in multi-dimensional computational fluid dynamics combustion simulation of ammonia-hydrogen spark ignition engines
,”
Int. J. Hydrogen Energy
55
,
300
318
(
2024
).
18.
J.
Liu
and
Z.
Liu
, “
In-cylinder thermochemical fuel reforming for high efficiency in ammonia spark-ignited engines through hydrogen generation from fuel-rich operations
,”
Int. J. Hydrogen Energy
54
,
837
848
(
2024
).
19.
Y.
Niki
,
D.-H.
Yoo
,
K.
Hirata
, and
H.
Sekiguchi
, “
Effects of ammonia gas mixed into intake air on combustion and emissions characteristics in diesel engine
,” in
Proceedings of the ASME 2016 Internal Combustion Engine Fall Technical Conference
,
2016
, No.
2016
9364
.
20.
T.
Li
,
X.
Zhou
,
N.
Wang
,
X.
Wang
,
R.
Chen
,
S.
Li
et al, “
A comparison between low-and high-pressure injection dual-fuel modes of diesel-pilot-ignition ammonia combustion engines
,”
J. Energy Inst.
102
,
362
373
(
2022
).
21.
E.
Nadimi
,
G.
Przybyla
,
M.
Lewandowski
, and
W.
Adamczyk
, “
Effects of ammonia on combustion, emissions, and performance of the ammonia/diesel dual-fuel compression ignition engine
,”
J. Energy Inst.
107
,
101158
(
2023
).
22.
B.
Wu
,
Y.
Wang
,
D.
Wang
,
Y.
Feng
, and
S.
Jin
, “
Generation mechanism and emission characteristics of N2O and NOx in ammonia-diesel dual-fuel engine
,”
Fuel
284
,
129291
(
2023
).
23.
Z.
Zhang
,
W.
Long
,
P.
Dong
,
H.
Tian
,
J.
Tian
,
B.
Li
et al, “
Performance characteristics of a two-stroke low speed engine applying ammonia/diesel dual direct injection strategy
,”
Fuel
332
,
126086
(
2023
).
24.
X.
Zhou
,
T.
Li
,
N.
Wang
,
X.
Wang
,
R.
Chen
, and
S.
Li
, “
Pilot diesel-ignited ammonia dual fuel low-speed marine engines: A comparative analysis of ammonia premixed and high-pressure spray combustion modes with CFD simulation
,”
Renewable Sustainable Energy Rev.
173
,
113108
(
2023
).
25.
R.
Chen
,
T.
Li
,
X.
Wang
,
S.
Huang
,
X.
Zhou
,
S.
Li
et al, “
Engine-out emissions from an ammonia/diesel dual-fuel engine—The characteristics of nitro-compounds and GHG emissions
,”
Fuel
362
,
130740
(
2024
).
26.
A.
Demirbas
, “
Importance of biodiesel as transportation fuel
,”
Energy Policy
35
(
9
),
4661
4670
(
2007
).
27.
P. T.
Pienkos
and
A.
Darzins
, “
The promise and challenges of microalgal‐derived biofuels
,”
Biofuels Bioprod. Biorefin.
3
(
4
),
431
440
(
2009
).
28.
X.
Wang
,
H. F.
Liu
,
Z. Q.
Zheng
et al, “
A skeletal mechanism of a biodiesel surrogate fuel for compression ignition engines
,”
Energy Fuels
29
(
2
),
1160
1171
(
2015
).
29.
W. U.
Gang
,
G.
Jiang
,
Z.
Yang
,
Z.
Wang
, and
W.
Zhou
, “
Particulate matter generation and emission characteristics of diesel engine fueled by biodiesel
,”
Res. Environ. Sci.
32
(
11
),
1809
1817
(
2019
).
30.
A. S.
Ramadhas
,
S.
Jayaraj
, and
C.
Muraleedharan
, “
Characterization and effect of using rubber seed oil as fuel in the compression ignition engines
,”
Renewable Energy
30
(
5
),
795
803
(
2005
).
31.
C. S.
Lee
,
S. W.
Park
, and
S.
Kwon
, “
An experimental study on the atomization and combustion characteristics of biodiesel-blended fuels
,”
Energy Fuels
19
(
5
),
2201
2208
(
2005
).
32.
B. S.
Chauhan
,
N.
Kumar
, and
H. M.
Cho
, “
A study on the performance and emission of a diesel engine fueled with Karanja biodiesel and its blends
,”
Energy
37
(
1
),
616
622
(
2013
).
33.
G. R.
Kannan
and
R.
Anand
, “
Effect of injection pressure and injection timing on DI diesel engine fuelled with biodiesel from waste cooking oil
,”
Biomass Bioenergy
46
,
343
352
(
2012
).
34.
R.
Sivasubramanian
,
J. B.
Sajin
, and
G. O.
Pillai
, “
Effect of ammonia to reduce emission from biodiesel fuelled diesel engine
,”
Int. J. Ambient Energy
43
,
661
665
(
2019
).
35.
Y.
Qiu
,
H.
Wei
,
L.
Wei
,
J.
Li
,
D.
Zhou
,
W. U.
Gang
, and
C.
Li
, “
Effect of biodiesel mixed with ammonia on the combustion and emission performance of homogeneous compression combustion engine
,”
China Oils Fats
48
(
2
),
65
69
(
2023
).
36.
E.
Nadimi
,
G.
Przybyła
,
D.
Emberson
,
T.
Løvås
,
Ł.
Ziołkowski
, and
W.
Adamczyk
, “
Effects of using ammonia as a primary fuel on engine performance and emissions in an ammonia/biodiesel dual-fuel CI engine
,”
Int. J. Energy Res.
46
(
11
),
15347
15361
(
2022
).
37.
IPCC
, Climate change 2014: Synthesis report,
2015
.
38.
X.
Wang
,
T.
Li
,
R.
Chen
,
S.
Li
,
M.
Kuang
,
Y.
Lv
et al, “
Exploring the GHG reduction potential of pilot diesel-ignited ammonia engines—Effects of diesel injection timing and ammonia energetic ratio
,”
Appl. Energy
357
,
122437
(
2024
).
39.
X.
Zhou
,
T.
Li
, and
P.
Yi
, “
The similarity ratio effects in design of scaled model experiments for marine diesel engines
,”
Energy
231
,
121116
(
2021
).
40.
X.
Zhou
,
T.
Li
,
Y.
Wei
, and
S.
Wu
, “
Scaling spray combustion processes in marine low-speed diesel engines
,”
Fuel
258
,
116133
(
2019
).
41.
X.
Zhou
,
T.
Li
,
Z.
Lai
, and
B.
Wang
, “
Theoretical study on similarity of diesel combustion
,” SAE Technical Paper 2018-01-0235,
2018
.
42.
K.
Akihama
,
Y.
Takatori
,
K.
Inagaki
,
S.
Sasaki
, and
A. M.
Dean
, “
Mechanism of the smokeless rich diesel combustion by reducing temperature
,”
SAE Trans.
55
(
6
),
648
662
(
2001
).
43.
O.
Mathieu
and
E. L.
Petersen
, “
Experimental and modeling study on the high temperature oxidation of ammonia and related NOx chemistry
,”
Combust. Flame
162
(
3
),
554
570
(
2015
).
44.
J.
Joo
,
S.
Lee
, and
O.
Kwon
, “
Effects of ammonia substitution on combustion stability limits and NOx emissions of premixed hydrogen–air flames
,”
Int. J. Hydrogen Energy
37
(
8
),
6933
6941
(
2012
).
45.
E.
Nadimi
,
G.
Przybyla
,
T.
Løvås
, and
W.
Adamczyk
, “
Effects of biodiesel injector configuration and its injection timing on performance, combustion and emissions characteristics of liquid ammonia dual direct injection engine
,”
J. Energy Inst
114
,
101605
(
2024
).
46.
R. K.
Lyon
, “
The nh3-no-o2 reaction
,”
Int. J. Chem. Kinet.
8
(
2
),
315
318
(
1976
).
47.
G.-W.
Lee
,
B.-H.
Shon
,
J.-G.
Yoo
,
J.-H.
Jung
, and
K.-J.
Oh
, “
The influence of mixing between NH3 and NO for a de-NOx reaction in the SNCR process
,”
J. Ind. Eng. Chem.
14
(
4
),
457
467
(
2008
).
48.
A.
Yousefi
,
H.
Guo
,
S.
Dev
,
B.
Liko
, and
S.
Lafrance
, “
Effects of ammonia energy fraction and diesel injection timing on combustion and emissions of an ammonia/diesel dual-fuel engine
,”
Fuel
314
,
122723
(
2022
).
49.
J.
Liu
and
J.
Liu
, “
Experimental investigation of the effect of ammonia substitution ratio on an ammonia-diesel dual-fuel engine performance
,”
J. Cleaner Prod.
434
,
140274
(
2024
).
50.
E.
Nadimi
,
G.
Przybyla
,
T.
Lovas
,
G.
Peczkis
, and
W.
Adamczyk
, “
Experimental and numerical study on direct injection of liquid ammonia and its injection timing in an ammonia-biodiesel dual injection engine
,”
Energy
284
,
129301
(
2023
).
You do not currently have access to this content.