This study redefines resource efficiency in the renewable energy sector by repurposing construction waste into high-performance thixotropic soils for additive manufacturing. Our comprehensive analysis reveals that these engineered soils achieve compressive strengths up to 30 MPa—indicating a 50% increase over traditional substrates—and flexural strengths reaching 5 MPa. Rigorous life cycle assessments quantify a reduction in carbon emissions by 20% and a resource efficiency enhancement to 85%, surpassing conventional materials which average 500 kg CO2 eq/ton in carbon footprint and 60% in resource efficiency. Fine-tuned 3D printing parameters deliver unparalleled precision, achieving layer accuracy to ±0.1 mm and reducing material wastage by 30%, while accelerating construction timelines by 40%. Additionally, the materials exhibit thermal stability with only a 0.1% variation under elevated temperatures and a durability that sustains less than 0.5 MPa degradation over a 10-month period. These quantitatively robust results support the thixotropic soils' adoption, not just as a sustainable choice but as a superior alternative to conventional building materials, setting a new paradigm in the construction of environmentally resilient and economically viable renewable energy infrastructures.

1.
E.
Zaneldin
, W. Ahmed, N. Alharbi, R. Alkaabi, and M. Alnuaimi, “Potential construction applications of sustainable 3D printed elements made from plastic waste,”
Mater. Sci. Forum
1082
,
277
283
(
2023
).
2.
Y.
Zhang
and
J.
Zhao
, “
Utilization of recycled materials for road construction
,”
J. Sustainable Constr.
22
(
4
),
112
120
(
2018
).
3.
B.
Muschard
and
J.
Bonvoisin
, “
CubeFactory2—An off-grid and circular 3D-printing mini-factory
,”
J. Open Hardware
3
(
1
),
3
(
2019
).
4.
L.
Martinez
and
A.
Gupta
, “
Innovations in 3D printing for residential buildings
,”
Constr. Innovation Rev.
5
(
2
),
88
97
(
2020
).
5.
T.
Green
and
M.
Fischer
, “
Integrating recycled materials into 3D printing for sustainable construction
,”
J. Cleaner Prod.
281
,
125623
(
2021
).
6.
A.
Lin
,
Y.
Tan
,
C.-H.
Wang
,
H.
Kua
, and
H.
Taylor
, “
Utilization of waste materials in a novel mortar–polymer laminar composite to be applied in construction 3D-printing
,”
Compos. Struct.
253
,
112764
(
2020
).
7.
Y.
Yang
and
F.
Zhao
, “
Closing the material loop in additive manufacturing: A literature review on waste recycling
,”
IOP Conf. Ser.
1196
(
1
),
012008
(
2021
).
8.
F.
Tahmasebinia
,
M.
Niemelä
,
S. M.
Ebrahimzadeh Sepasgozar
et al, “
Three-dimensional printing using recycled high-density polyethylene: Technological challenges and future directions for construction
,”
Buildings
8
(
11
),
165
(
2018
).
9.
S.
Volpe
,
V.
Sangiorgio
,
A.
Petrella
,
M.
Notarnicola
,
H.
Varum
, and
F.
Fiorito
, “
3D printed concrete blocks made with sustainable recycled material
,”
Vitruvio—Int. J. Archit. Technol. Sustainability
8
(
1
),
70
(
2023
).
10.
J. H.
Kim
and
S. B.
Park
, “
Environmental impact assessment of recycled construction waste
,”
Environ. Eng. Sci.
36
(
5
),
567
575
(
2019
).
11.
A.
Singh
and
D.
Gupta
, “
Conversion of waste plastics into building materials: A review and future directions
,”
Waste Resour. Manage.
70
(
3
),
225
242
(
2017
).
12.
P.
Moreno
and
E.
Rodriguez
, “
Transforming waste ceramic tiles and glass into decorative building materials: Experimental studies
,”
J. Sustainable Build. Mater. Technol.
3
(
1
),
45
58
(
2019
).
13.
L.
Chen
and
W.
Zhang
, “
Reutilization of waste wood in construction: Potential as timber boards and fiberboards
,”
Int. J. Sustainable Build. Mater.
12
(
4
),
112
128
(
2020
).
14.
S. R.
Salla
,
C. D.
Modhera
, and
U. R.
Babu
, “
An experimental study on various industrial wastes in concrete for sustainable construction
,”
J. Adv. Concr. Technol.
19
(
2
),
133
148
(
2021
).
15.
N.
Mir
,
S.
Khan
,
A.
Kul
,
O.
Şahin
,
M.
Şahmaran
, and
M.
Koç
, “
Life cycle assessment of construction and demolition waste-based geopolymers suited for use in 3-dimensional additive manufacturing
,”
Cleaner Eng. Technol.
10
,
100553
(
2022
).
16.
J.
Zhao
,
L.
Tong
,
B.
Li
,
T.
Chen
,
C.
Wang
,
G.
Yang
, and
Y.
Zheng
, “
Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment
,”
J. Cleaner Prod.
307
,
127085
(
2021
).
17.
B.
Figiela
and
K.
Korniejenko
, “
The possibility of using waste materials as raw materials for the production of geopolymers
,”
Acta Innovations
2020
,
48
56
.
18.
Q.
Munir
,
S.
Afshariantorghabeh
, and
T.
Kärki
, “
Industrial waste pretreatment approach for 3D printing of sustainable building materials
,”
Urban Sci.
6
(
3
),
50
(
2022
).
19.
V.
Voney
,
P.
Odaglia
,
C.
Brumaud
,
B.
Dillenburger
, and
G.
Habert
, “
Geopolymer formulation for binder jet 3D printing
,” in Second RILEM International Conference on Concrete and Digital Fabrication (DC 2020), RILEM Bookseries Vol. 28 (Springer, Cham, 2020), pp.
153
161
.
20.
G.
Slavcheva
and
O. V.
Artamonova
, “
Rheological behavior and mix design for 3D printable cement paste
,”
Key Eng. Mater.
799
,
282
287
(
2019
).
21.
R.
Jayathilakage
,
J.
Sanjayan
, and
P.
Rajeev
, “
Direct shear test for the assessment of rheological parameters of concrete for 3D printing applications
,”
Mater. Struct.
52
(
1
),
12
(
2019
).
22.
H.
Lee
,
E.-A.
Seo
,
W.-W.
Kim
, and
J. H.
Moon
, “
Experimental study on time-dependent changes in rheological properties and flow rate of 3D concrete printing materials
,”
Materials
14
,
6278
(
2021
).
23.
B.
Panda
,
C.
Unluer
, and
M. J.
Tan
, “
Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing
,”
Composites, Part B
176
,
107290
(
2019
).
24.
R. J. M.
Wolfs
,
F.
Bos
, and
T. A. M.
Salet
, “
Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing
,”
Cem. Concr. Res.
106
,
103
116
(
2018
).
25.
E.
Mutaz
,
M.
Serati
,
R.
Rimmelin
, and
D. J.
Williams
, “
Variation of apparent cohesion and friction angle under polyaxial stress conditions in concrete
,”
IOP Conf. Ser.
833
,
012018
(
2021
).
26.
M. J.
Jiang
,
H. B.
Yan
,
H. H.
Zhu
, and
S.
Utili
, “
Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses
,”
Comput. Geotech.
38
,
14
29
(
2011
).
27.
H.
Jiang
, “
Failure criteria for cohesive‐frictional materials based on Mohr–Coulomb failure function
,”
Int. J. Numer. Anal. Methods Geomech.
39
,
1471
1482
(
2015
).
28.
G. M.
Odegard
,
T. S.
Gates
, and
H. M.
Herring
, “
Characterization of viscoelastic properties of polymeric materials through nanoindentation
,”
Exp. Mech.
45
,
130
136
(
2005
).
29.
E. G.
Herbert
,
W. C.
Oliver
, and
G. M.
Pharr
, “
Nanoindentation and the dynamic characterization of viscoelastic solids
,”
J. Phys. D
41
,
074021
(
2008
).
30.
T.-Z.
Zhang
,
S.
Bai
,
Y.
Zhang
, and
B.
Thibaut
, “
Viscoelastic properties of wood materials characterized by nanoindentation experiments
,”
Wood Sci. Technol.
46
,
1003
1016
(
2012
).
31.
F.
Rodrigues
,
M. T.
Carvalho
,
L.
Evangelista
, and
J.
de Brito
, “
Physical-chemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants
,”
J. Cleaner Prod.
52
,
438
445
(
2013
).
32.
P.
Sadrolodabaee
,
G.
Di Rienzo
,
I.
Farina
,
C.
Salzano
,
N.
Singh
, and
F.
Colangelo
, “
Characterization of eco-friendly lightweight aggregate concretes incorporating industrial wastes
,”
Key Eng. Mater.
944
,
209
217
(
2023
).
33.
W. Q.
Zhu
,
Y. K.
Lin
, and
Y.
Lei
, “
On fatigue crack growth under random loading
,”
Eng. Fract. Mech.
43
,
1
12
(
1992
).
34.
R.
Brighenti
,
A.
Carpinteri
, and
N.
Corbari
, “
Damage mechanics and Paris regime in fatigue life assessment of metals
,”
Int. J. Pressure Vessels Piping
104
,
57
68
(
2013
).
35.
J. E. B.
Jennings
and
J. B.
Burland
, “
Limitations to the use of effective stresses in partly saturated soils
,”
Geotechnique
12
(
2
),
125
144
(
1962
).
36.
D. A.
Zreik
,
J. T.
Germaine
, and
C. C.
Ladd
, “
Undrained strength of ultra-weak cohesive soils: Relationship between water content and effective stress
,”
Soils Found.
37
(
3
),
117
128
(
1997
).
37.
S. A.
Stanier
and
A.
Tarantino
, “
An approach for predicting the stability of vertical cuts in cohesionless soils above the water table
,”
Eng. Geol.
158
,
98
108
(
2013
).
38.
G.
Gudehus
, “
Implications of the principle of effective stress
,”
Acta Geotech.
16
,
1939
1947
(
2020
).
You do not currently have access to this content.