North China regions have faced serious water–energy–carbon (WEC) conflicts for many years, which severely delay the achievement of carbon peaking and carbon neutrality goals. Figuring out the sectoral WEC nexus clearly is a significant way to promote regional WEC synergistic benefits. By combining the input–output model and the structural decomposition analysis model, this study investigates how various drivers influence the sectoral WEC nexus and intersectoral footprint in North China regions. The method involves classifying the driving factors into four parts: the water–energy relationship, the energy intensity, the production structure adjustments, and end-use demand. The main conclusions are drawn as follows: (1) Reducing energy intensity in North China brings both water-saving and carbon reduction benefits, while increasing energy intensity causes increasing water consumption and carbon emissions. (2) Production structure adjustments result in different impacts on water use, energy use, and carbon emissions, which makes Inner Mongolia depend on more energy and less water during its development process from 2012 to 2017. This proposed method investigated the quantitative footprint changes caused by demand changes in key downstream sectors, which provides a new insight to explore and meliorate the sectoral WEC nexus in regions with acute energy–economy–environment conflicts.

1.
Chen
,
P.
,
Alvarado
,
V.
, and
Hsu
,
S.
, “
Water energy nexus in city and hinterlands: Multi-regional physical input-output analysis for Hong Kong and South China
,”
Appl. Energy
225
,
986
997
(
2018
).
2.
Cheng
,
L.
,
Tian
,
J.
,
Xu
,
H.
, and
Chen
,
L.
, “
Unveiling the nexus profile of embodied water–energy–carbon–value flows of the Yellow River Basin in China
,”
Environ. Sci. Technol.
57
(
23
),
8568
8577
(
2023
).
3.
Chhipi
,
S.
,
Hewage
,
K.
, and
Sadiq
,
R.
, “
Water–energy–carbon nexus modeling for urban water systems: System dynamics approach
,”
J. Water Res. Plann. Manage.
143
(
6
),
4017016
4017027
(
2017
).
4.
Choudhury
,
B. J.
, “
Carbon-water-energy relations for selected river basins
,”
Adv. Space Res.
26
,
1091
1099
(
2000
).
5.
Common
,
M. S.
and
Salma
,
U.
, “
Accounting for changes in Australian carbon dioxide emissions
,”
Energy Econ.
14
,
217
225
(
1992
).
6.
DeNooyer
,
T. A.
,
Peschel
,
J. M.
,
Zhang
,
Z.
, and
Stillwell
,
A. S.
, “
Integrating water resources and power generation: The energy–water nexus in Illinois
,”
Appl. Energy
162
,
363
371
(
2016
).
7.
Fan
,
J.
,
Kong
,
L.
, and
Zhang
,
X.
, “
Synergetic effects of water and climate policy on energy-water nexus in China: A computable general equilibrium analysis
,”
Energy Policy
123
,
308
317
(
2018
).
8.
Flörke
,
M.
,
Schneider
,
C.
, and
McDonald
,
R. I.
, “
Water competition between cities and agriculture driven by climate change and urban growth
,”
Nat. Sustainability
1
,
51
58
(
2018
).
9.
Hoekstra
,
R.
and
Van den Bergh
,
J. C. J. M.
, “
Structural decomposition analysis of physical flows in the economy
,”
Environ. Resour. Econ.
23
,
357
378
(
2002
).
10.
Jiang
,
J.
,
Ye
,
B.
,
Shao
,
S.
,
Zhou
,
N.
,
Wang
,
D.
,
Zeng
,
Z.
et al, “
Two-tier synergic governance of greenhouse gas emissions and air pollution in China's Megacity, Shenzhen: Impact evaluation and policy implication
,”
Environ. Sci. Technol.
55
,
7225
7236 (
2021
).
11.
Lee
,
M.
,
Keller
,
A. A.
,
Chiang
,
P.
,
Den
,
W.
,
Wang
,
H.
,
Hou
,
C.
et al, “
Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks
,”
Appl. Energy
205
,
589
601
(
2017
).
12.
Lee
,
S.
,
Choi
,
J.
,
Yoo
,
S.
, and
Mohtar
,
R. H.
, “
Water footprint for Korean rice products and virtual water trade in a water-energy-food nexus
,”
Water Int.
43
,
871
886
(
2018
).
13.
Li
,
H.
,
Zhao
,
Y.
, and
Lin
,
J.
, “
A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies
,”
WIREs Energy Environ.
9
,
e358
(
2019
).
14.
Li
,
H.
,
Zhao
,
Y. H.
,
Zheng
,
L.
,
Wang
,
S.
,
Kang
,
J. N.
,
Liu
,
Y.
,
Li
,
H. X.
,
Shi
,
L.
, and
Shan
,
Y. L.
, “
Dynamic characteristics and drivers of the regional household energy-carbon-water nexus in China
,”
Environ. Sci. Pollut. Res.
28
,
55220
55232
(
2021
).
15.
Lim-Wavde
,
K.
,
Zhai
,
H.
,
Kauffman
,
R. J.
, and
Rubin
,
E. S.
, “
Assessing carbon pollution standards: Electric power generation pathways and their water impacts
,”
Energy Policy
120
,
714
733
(
2018
).
16.
Liu
,
Y.
,
Tan
,
Q.
,
Zhang
,
X.
,
Han
,
J.
, and
Guo
,
M.
, “
How does electricity supply mode affect energy-water-emissions nexus in urban energy system? Evidence from energy transformation in Beijing, China
,”
J. Cleaner Prod.
366
,
132892
(
2022
).
17.
Liu
,
Z.
,
Guan
,
D.
,
Wei
,
W.
,
Davis
,
S. J.
,
Ciais
,
P.
,
Bai
,
J.
et al, “
Reduced carbon emission estimates from fossil fuel combustion and cement production in China
,”
Nature
524
,
335
338
(
2015
).
18.
Liu
,
Z.
,
Huang
,
Q.
,
He
,
C.
,
Wang
,
C.
,
Wang
,
Y.
, and
Li
,
K.
, “
Water-energy nexus within urban agglomeration: An assessment framework combining the multiregional input-output model, virtual water, and embodied energy
,”
Resour., Conserv. Recycl.
164
,
105113
(
2021
).
19.
Mehrjerdi
,
H.
and
Aljabery
,
A.
, “
Modeling and optimal planning of an energy-water-carbon nexus system for sustainable development of local communities
,”
Adv. Sustainable Syst.
5
,
2100024
(
2021
).
20.
Miller
,
R. E.
and
Blair
,
P. D.
,
Input Output Analysis: Foundations and Extensions
(
Cambridge University Press
,
New York
,
2009
).
21.
Nikolov
,
N.
and
Fox
,
D.
, “
A coupled carbon-water-energy-vegetation model to assess responses of temperate forest ecosystems to changes in climate and atmospheric CO2. Part I. Model concept
,”
Environ. Pollut.
83
(
1-2
),
251
262
(
1994
).
22.
Peng
,
X.
,
Tao
,
X.
,
Zhang
,
H.
,
Chen
,
J.
, and
Feng
,
K.
, “
CO2 emissions from the electricity sector during China's economic transition: From the production to the consumption perspective
,”
Sustainable Prod Consumption
27
,
1010
1020
(
2021
).
23.
Qu
,
S.
,
Guo
,
Y.
,
Ma
,
Z.
,
Chen
,
W.
,
Liu
,
J.
,
Liu
,
G.
et al, “
Implications of China's foreign waste ban on the global circular economy
,”
Resour., Conserv. Recycl.
144
,
252
255
(
2019
).
24.
Sellers
,
P. J.
,
Dickinson
,
R. E.
,
Randall
,
D. A.
,
Betts
,
A. K.
,
Hall
,
F. G.
,
Berry
,
J. A.
et al, “
Modeling the exchanges of energy, water, and carbon between continents and the atmosphere
,”
Science
275
,
502
509
(
1997
).
25.
Staupe-Delgado
,
R.
, “
The water–energy–food–environmental security nexus: Moving the debate forward
,”
Environ., Develop. Sustainability
22
,
6131
6147
(
2020
).
26.
Tambo
,
E.
,
Duo-quan
,
W.
, and
Zhou
,
X.
, “
Tackling air pollution and extreme climate changes in China: Implementing the Paris climate change agreement
,”
Environ. Int.
95
,
152
156
(
2016
).
27.
Tan
,
Q.
,
Han
,
J.
, and
Liu
,
Y.
, “
Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis
,”
Energy
282
,
128815
(
2023
).
28.
Tan
,
Q.
,
Liu
,
Y.
, and
Zhang
,
X.
, “
Stochastic optimization framework of the energy-water-emissions nexus for regional power system planning considering multiple uncertainty
,”
J. Cleaner Prod.
281
,
124470
(
2021
).
29.
Tian
,
Z.
,
Fang
,
D.
, and
Chen
,
B.
, “
Three-scale input-output analysis for energy and water consumption in urban agglomeration
,”
J. Cleaner Prod.
268
,
122148
(
2020
).
30.
Wan
,
R.
and
Ni
,
M.
, “
Sustainable water–energy–environment nexus
,”
Environ. Sci. Pollut. Res.
28
,
40049
40052
(
2021
).
31.
Wang
,
J.
,
Li
,
Y.
,
Huang
,
J.
,
Yan
,
T.
, and
Sun
,
T.
, “
Growing water scarcity, food security and government responses in China
,”
Global Food Secur.
14
,
9
17
(
2017
).
32.
Wang
,
J.
,
Yu
,
Z.
,
Zeng
,
X.
,
Wang
,
Y.
,
Li
,
K.
, and
Deng
,
S.
, “
Water-energy-carbon nexus: A life cycle assessment of post-combustion carbon capture technology from power plant level
,”
J. Cleaner Prod.
312
,
127727
(
2021
).
33.
Wang
,
P. P.
,
Li
,
Y. P.
,
Huang
,
G. H.
,
Wang
,
S. G.
,
Suo
,
C.
, and
Ma
,
Y.
, “
A multi-scenario factorial analysis and multi-regional input-output model for analyzing CO2 emission reduction path in Jing-Jin-Ji region
,”
J. Cleaner Prod.
300
,
126782
(
2021
).
34.
Wang
,
S.
,
Cao
,
T.
, and
Chen
,
B.
, “
Urban energy–water nexus based on modified input–output analysis
,”
Appl. Energy
196
,
208
217
(
2017
).
35.
Wang
,
X.
,
Klemeš
,
J. J.
,
Wang
,
Y.
,
Dong
,
X.
,
Wei
,
H.
,
Xu
,
Z.
et al, “
Water-energy-carbon emissions nexus analysis of China: An environmental input-output model-based approach
,”
Appl. Energy
261
,
114431
(
2020
).
36.
Xiang
,
X.
and
Jia
,
S.
, “
China's water-energy nexus: Assessment of water-related energy use
,”
Resour., Conserv. Recycl.
144
,
32
38
(
2019
).
37.
Xu
,
S.
, “
Governing the energy–water nexus in China: An analysis from the perspective of the science–policy interface
,”
J. Environ. Manage.
272
,
111119
(
2020
).
38.
Xu
,
S.
,
Zhang
,
L.
,
Liu
,
Y.
,
Zhang
,
W.
,
He
,
Z.
,
Long
,
R.
et al, “
Determination of the factors that influence increments in CO2 emissions in Jiangsu, China using the SDA method
,”
J. Cleaner Prod.
142
,
3061
3074
(
2017
).
39.
Yang
,
X.
,
Wang
,
Y.
,
Sun
,
M.
,
Wang
,
R.
, and
Zheng
,
P.
, “
Exploring the environmental pressures in urban sectors: An energy-water-carbon nexus perspective
,”
Appl. Energy
228
,
2298
2307
(
2018
).
40.
Zhao
,
Y.
,
Onat
,
N. C.
,
Kucukvar
,
M.
, and
Tatari
,
O.
, “
Carbon and energy footprints of electric delivery trucks: A hybrid multi-regional input-output life cycle assessment
,”
Transp. Res. Part D: Transp. Environ.
47
,
195
207
(
2016
).
41.
Zheng
,
H.
,
Zhang
,
Z.
,
Wei
,
W.
,
Song
,
M.
,
Dietzenbacher
,
E.
,
Wang
,
X.
et al, “
Regional determinants of China's consumption-based emissions in the economic transition
,”
Environ. Res. Lett.
15
,
74001
(
2020
).
42.
Zhou
,
N.
,
Zhang
,
J.
,
Khanna
,
N.
,
Fridley
,
D.
,
Jiang
,
S.
, and
Liu
,
X.
, “
Intertwined impacts of water, energy development, and carbon emissions in China
,”
Appl. Energy
238
,
78
91
(
2019
).
You do not currently have access to this content.